Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 1991 Jul;21(7):1677-84.
doi: 10.1002/eji.1830210714.

Characterization of the CAMPATH-1 (CDw52) antigen: biochemical analysis and cDNA cloning reveal an unusually small peptide backbone

Affiliations

Characterization of the CAMPATH-1 (CDw52) antigen: biochemical analysis and cDNA cloning reveal an unusually small peptide backbone

M Q Xia et al. Eur J Immunol. 1991 Jul.

Abstract

The CAMPATH-1 (CDw52) antigen has been purified from human spleen. The antigenic epitope is heat stable but sensitive to mild alkali treatment. Experiments with phosphatidylinositol-specific phospholipase C indicate that it is anchored by a glycosylphosphatidylinositol (GPI) anchor. An N-terminal sequence of 11 amino acids was determined, followed by an abrupt stop. Using short overlapping mixed oligonucleotide primers, cDNA synthesized from the mRNA of a human B cell line was amplified by the polymerase chain reaction. The product was used to isolate cDNA clones and the full amino acid sequence of the CAMPATH-1 antigen was deduced. It consists of 37 amino acid residues plus a 24-residue signal peptide. It has all the features expected for a GPI-anchored membrane protein except that the predicted mature protein is remarkably short, comprising no more than 18 residues and possibly as few as 12 (depending on the GPI linkage site). Potential attachment sites for carbohydrate are present and it is shown that the antigen contains N-linked oligosaccharide(s). This structure accounts for the known properties of the antigen, though the exact reasons why it is such a good target for cell lysis in vitro and in vivo are not yet clear.

PubMed Disclaimer

Publication types

MeSH terms

LinkOut - more resources