Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2006 Dec;47(12):5437-46.
doi: 10.1167/iovs.06-0532.

Evaluation of the new photosensitizer Tookad (WST09) for photodynamic vessel occlusion of the choroidal tissue in rabbits

Affiliations

Evaluation of the new photosensitizer Tookad (WST09) for photodynamic vessel occlusion of the choroidal tissue in rabbits

Carsten Framme et al. Invest Ophthalmol Vis Sci. 2006 Dec.

Abstract

Purpose: To determine the efficacy of Tookad (WST09; Negma-Lerads, Magny-Les-Hameaux, France) photodynamic therapy (T-PDT) by evaluating the angiographic and histologic closure of choroidal vessels at different radiance exposures, drug dosages, and intervals between photosensitizer injection and laser application in a rabbit model.

Methods: Chinchilla Bastard rabbits were injected intravenously with three different dye concentrations (2.5, 5, and 10 mg/kg) before application of light. In every group T-PDT was performed at four different times after injection: 5, 15, 30, and 60 minutes with different radiance exposures ranging from 200 to 3 J/cm2. Fundus photographs and fluorescein angiograms were obtained 90 minutes after injection. Follow-up angiographies were performed at days 1, 3, 7, and 14 after initial treatment. Histology was performed in selected cases immediately after treatment and on days 1, 3, and 7.

Results: Immediately after irradiation, most of the visible lesions were angiographically hyperfluorescent due to damaged vessel endothelium and associated RPE damage. Lesions from high-radiance exposures revealed immediate hypofluorescence, indicating vessel closure. Hypofluorescent lesions appeared mainly during day 1 (all lesions angiographically visible, some hypofluorescent) to day 3 (all lesions hypofluorescent) after treatment. At day 7, ophthalmoscopically visible hyperpigmentation took place in all lesions. ED50 thresholds for angiographic hypofluorescence determined at day 3 after treatment with 2.5 mg/kg were 18.8 J/cm2 (5 minutes), 62.0 J/cm2 (15 minutes), and >100 J/cm2 (30 minutes); with 5 mg/kg, 8.4 J/cm2 (5 minutes), 22.8 J/cm2 (15 minutes), 54.5 J/cm2 (30 minutes), and >100 J/cm2 (60 minutes); and with 10 mg/kg, 11.7 J/cm2 (30 minutes) and 54.1 J/cm2 (60 minutes). Histology of the angiographically hypofluorescent lesions revealed vessel thrombosis in all groups 1 hour after PDT up to 7 days after treatment. Sparing of photoreceptors indicated selectivity of T-PDT; however, slight damage was partly observable. After 7 days, localized proliferation of the RPE cells was noted and was enhanced 14 days after treatment.

Conclusions: T-PDT has the potential to achieve selective choroidal vessel occlusion with proper parameter selection, such as (1) 2.5 mg/kg, 5 minutes, 100 J/cm2; (2) 5 mg/kg, 5 minutes, 25 J/cm2; or (3) 5 mg/kg, 15 minutes, 50 J/cm2; however, slight damage to the photoreceptors cannot be ruled out. RPE proliferation indicates primary RPE damage due to PDT, also described with the use of all other photosensitizers.

PubMed Disclaimer

Similar articles

Cited by

Publication types

MeSH terms

Substances

LinkOut - more resources