Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Review
. 2007 Feb 1;458(1):73-89.
doi: 10.1016/j.abb.2006.10.014. Epub 2006 Nov 10.

Regulation of cation channels in cardiac and smooth muscle cells by intracellular magnesium

Affiliations
Review

Regulation of cation channels in cardiac and smooth muscle cells by intracellular magnesium

Kanigula Mubagwa et al. Arch Biochem Biophys. .

Abstract

Magnesium regulates various ion channels in many tissues, including those of the cardiovascular system. General mechanisms by which intracellular Mg(2+) (Mg(i)(2+)) regulates channels are presented. These involve either a direct interaction with the channel, or an indirect modification of channel function via other proteins, such as enzymes or G proteins, or via membrane surface charges and phospholipids. To provide an insight into the role of Mg(i)(2+) in the cardiovascular system, effects of Mg(i)(2+) on major channels in cardiac and smooth muscle cells and the underlying mechanisms are then reviewed. Although Mg(i)(2+) concentrations are known to be stable, conditions under which they may change exist, such as following stimulation of beta-adrenergic receptors and of insulin receptors, or during pathophysiological conditions such as ischemia, heart failure or hypertension. Modifications of cardiovascular electrical or mechanical function, possibly resulting in arrhythmias or hypertension, may result from such changes of Mg(i)(2+) and their effects on cation channels.

PubMed Disclaimer

Publication types

LinkOut - more resources