Pathophysiologic mechanisms in acquired aplastic anemia
- PMID: 17124043
- DOI: 10.1182/asheducation-2006.1.72
Pathophysiologic mechanisms in acquired aplastic anemia
Abstract
Aplastic anemia, an unusual hematologic disease, is the paradigm of the human bone marrow failure syndromes. Absence of hematopoietic cells has been recognized from the characteristic morphology for a century; an immune pathophysiology has been inferred from improvement in blood counts with immunosuppressive therapy in the majority of patients. Molecular mechanisms underlying both T cell effector cells and the target marrow stem and progenitor cells are now being identified. Activated type 1 cytotoxic T cells and type 1 cytokines have been implicated in cell culture experiments; clues to the molecular basis of the aberrant immune response include cytokine gene polymorphisms and abnormalities in the regulatory pathways for gamma-interferon. For stem cell depletion, mutations in genes of the telomere repair complex are present in some patients with apparently acquired aplastic anemia. Telomerase deficiency is associated with short telomeres and a quantitative reduction in marrow progenitors and likely also a qualitative deficiency in the repair capacity of hematopoietic tissue.
Publication types
MeSH terms
Substances
LinkOut - more resources
Full Text Sources
Medical
