Maturation of rat cerebellar Purkinje cells reveals an atypical Ca2+ channel current that is inhibited by omega-agatoxin IVA and the dihydropyridine (-)-(S)-Bay K8644
- PMID: 17124267
- PMCID: PMC2151333
- DOI: 10.1113/jphysiol.2006.121905
Maturation of rat cerebellar Purkinje cells reveals an atypical Ca2+ channel current that is inhibited by omega-agatoxin IVA and the dihydropyridine (-)-(S)-Bay K8644
Abstract
To determine if the properties of Ca2+ channels in cerebellar Purkinje cells change during postnatal development, we recorded Ca2+ channel currents from Purkinje cells in cerebellar slices of mature (postnatal days (P) 40-50) and immature (P13-20) rats. We found that at P40-50, the somatic Ca2+ channel current was inhibited by omega-agatoxin IVA at concentrations selective for P-type Ca2+ channels (approximately 85%; IC50, <1 nM) and by the dihydropyridine (-)-(S)-Bay K8644 (approximately 70%; IC50, approximately 40 nM). (-)-(S)-Bay K8644 is known to activate L-type Ca2+ channels, but the decrease in current was not secondary to the activation of L-type channels because inhibition by (-)-(S)-Bay K8644 persisted in the presence of the L-type channel blocker (R,S)-nimodipine. By contrast, at P13-20, the current was inhibited by omega-agatoxin IVA (approximately 86%; IC50, approximately 1 nM) and a minor component was inhibited by (R,S)-nimodipine (approximately 8%). The dihydropyridine (-)-(S)-Bay K8644 had no clear effect when applied alone, but in the presence of (R,S)-nimodipine it reduced the current (approximately 40%), suggesting that activation of L-type channels by (-)-(S)-Bay K8644 masks its inhibition of non-L-type channels. Our findings indicate that Purkinje neurons express a previously unrecognized type of Ca2+ channel that is inhibited by omega-agatoxin IVA, like prototypical P-type channels, and by (-)-(S)-Bay K8644, unlike classical P-type or L-type channels. During maturation, there is a decrease in the size of the L-type current and an increase in the size of the atypical Ca2+ channel current. These changes may contribute to the maturation of the electrical properties of Purkinje cells.
Figures







Comment in
-
Calcium channel subtypes--another layer of complexity to an already intricate story.J Physiol. 2007 Feb 1;578(Pt 3):629. doi: 10.1113/jphysiol.2006.126144. Epub 2006 Dec 14. J Physiol. 2007. PMID: 17170042 Free PMC article. No abstract available.
References
-
- Baxter AJ, Dixon J, Ince F, Manners CN, Teague SJ. Discovery and synthesis of methyl 2,5-dimethyl-4-[2-(phenylmethyl) benzoyl]-1H-pyrrole-3-carboxylate (FPL 64176) and analogues: the first examples of a new class of calcium channel activator. J Med Chem. 1993;36:2739–2744. - PubMed
-
- Bechem M, Hoffmann H. The molecular mode of action of the Ca2+ agonist (−) BAY K8644 on the cardiac Ca2+ channel. Pflugers Arch. 1993;424:343–353. - PubMed
-
- Berrow NS, Brice NL, Tedder I, Page KM, Dolphin AC. Properties of cloned rat α1A calcium channels transiently expressed in the COS-7 cell line. Eur J Neurosci. 1997;9:739–748. - PubMed
-
- Bourinet E, Soong TW, Sutton K, Slaymaker S, Mathews E, Monteil A, Zamponi GW, Nargeot J, Snutch TP. Splicing of α1A subunit gene generates phenotypic variants of P- and Q-type calcium channels. Nat Neurosci. 1999;2:407–415. - PubMed
Publication types
MeSH terms
Substances
Grants and funding
LinkOut - more resources
Full Text Sources
Miscellaneous