Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2006 Nov 30;49(24):7215-26.
doi: 10.1021/jm060776w.

Application of phosphoramidate ProTide technology significantly improves antiviral potency of carbocyclic adenosine derivatives

Affiliations

Application of phosphoramidate ProTide technology significantly improves antiviral potency of carbocyclic adenosine derivatives

Christopher McGuigan et al. J Med Chem. .

Abstract

We report the application of phosphoramidate pronucleotide (ProTide) technology to the antiviral agent carbocyclic L-d4A (L-Cd4A). The phenyl methyl alaninyl parent ProTide of L-Cd4A was prepared by Grignard-mediated phosphorochloridate reaction and resulted in a compound with significantly improved anti-HIV (2600-fold) and HBV activity. We describe modifications of the aryl, ester, and amino acid regions of the ProTide and how these changes affect antiviral activity and metabolic stability. Separate and distinct SARs were noted for HIV and HBV. Additionally, ProTides were prepared from the D-nucleoside D-Cd4A and the dideoxy analogues L-CddA and D-CddA. These compounds showed more modest potency improvements over the parent drug. In conclusion, the ProTide approach is highly successful when applied to L-Cd4A with potency improvements in vitro as high as 9000-fold against HIV. With a view to preclinical candidate selection we carried out metabolic stability studies using cynomolgus monkey liver and intestinal S9 fractions.

PubMed Disclaimer

Publication types

MeSH terms

LinkOut - more resources