Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Review
. 2006 Oct-Dec;10(4):808-25.
doi: 10.1111/j.1582-4934.2006.tb00526.x.

X-linked mental retardation and epigenetics

Affiliations
Review

X-linked mental retardation and epigenetics

Guy Froyen et al. J Cell Mol Med. 2006 Oct-Dec.

Abstract

The search for the genetic defects in constitutional diseases has so far been restricted to direct methods for the identification of genetic mutations in the patients' genome. Traditional methods such as karyotyping, FISH, mutation screening, positional cloning and CGH, have been complemented with newer methods including array-CGH and PCR-based approaches (MLPA, qPCR). These methods have revealed a high number of genetic or genomic aberrations that result in an altered expression or reduced functional activity of key proteins. For a significant percentage of patients with congenital disease however, the underlying cause has not been resolved strongly suggesting that yet other mechanisms could play important roles in their etiology. Alterations of the 'native' epigenetic imprint might constitute such a novel mechanism. Epigenetics, heritable changes that do not rely on the nucleotide sequence, has already been shown to play a determining role in embryonic development, X-inactivation, and cell differentiation in mammals. Recent progress in the development of techniques to study these processes on full genome scale has stimulated researchers to investigate the role of epigenetic modifications in cancer as well as in constitutional diseases. We will focus on mental impairment because of the growing evidence for the contribution of epigenetics in memory formation and cognition. Disturbance of the epigenetic profile due to direct alterations at genomic regions, or failure of the epigenetic machinery due to genetic mutations in one of its components, has been demonstrated in cognitive derangements in a number of neurological disorders now. It is therefore tempting to speculate that the cognitive deficit in a significant percentage of patients with unexplained mental retardation results from epigenetic modifications.

PubMed Disclaimer

Similar articles

Cited by

References

    1. Robinson PJ, Rhodes D. Structure of the ’30 nm’ chromatin fibre: a key role for the linker histone. Curr Opin Struct Biol. 2006;16:336–43. - PubMed
    1. Saeki H, Ohsumi K, Aihara H, Ito T, Hirose S, Ura K, Kaneda Y. Linker histone variants control chromatin dynamics during early embryogenesis. Proc Natl Acad Sci USA. 2005;102:5697–702. - PMC - PubMed
    1. Loden M, van Steensel B. Whole-genome views of chromatin structure. Chromosome Res. 2005;13:289–98. - PubMed
    1. Ringrose L, Paro R. Epigenetic regulation of cellular memory by the Polycomb and Trithorax group proteins. Annu Rev Genet. 2004;38:413–43. - PubMed
    1. Klose RJ, Bird AP. Genomic DNA methylation: the mark and its mediators. Trends Biochem Sci. 2006;31:89–97. - PubMed

Publication types

MeSH terms