Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2006 Oct:24 Suppl 1:8-13.
doi: 10.1157/13094272.

[Proteus penneri]

[Article in Spanish]
Affiliations

[Proteus penneri]

[Article in Spanish]
Rafael Cantón et al. Enferm Infecc Microbiol Clin. 2006 Oct.

Abstract

Proteus penneri, formerly P. vulgaris biogroup 1, was recognized as a new species in 1982. This species is associated with clinical processes similar to those involving P. mirabilis and P. vulgaris and expresses similar pathogenic determinants. In clinical samples, P. penneri is mainly isolated from urine (50%), wound and soft tissue exudates (25%), and blood cultures (15%), mostly of nosocomial origin. Although P. penneri is easy to identify, it can be misidentified as P. vulgaris by automatic systems that do not include the indol test result in the identification process. This species has a characteristic susceptibility profile, essentially due to the production of the chromosomal inducible beta-lactamase HugA, which presents a high homology (86%) with CumA from P. vulgaris. HugA is inhibited by clavulanic acid and determines resistance to aminopenicillins and first- and second-generation cephalosporins, including cefuroxime, but does not affect cephamycins or carbapenems, and is inhibited by clavulanic acid. HugA is derepressed due to mutational processes in gene regulators, affecting the activity of cefotaxime and, to a much lesser extent, that of ceftazidime and aztreonam. This phenotype resembles the production of an extended spectrum beta-lactamase. Like other Proteus species, P. penneri is resistant to tetracyclines and should be considered resistant to nitrofurantoin.

PubMed Disclaimer

Publication types

MeSH terms

LinkOut - more resources