Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Review
. 2007 Jan 1:12:2588-600.
doi: 10.2741/2257.

Molecular chaperones: multiple functions, pathologies, and potential applications

Affiliations
Review

Molecular chaperones: multiple functions, pathologies, and potential applications

Alberto J L Macario et al. Front Biosci. .

Abstract

Cell stressors are ubiquitous and frequent, challenging cells often, which leads to the stress response with activation of anti-stress mechanisms. These mechanisms involve a variety of molecules, including molecular chaperones also known as heat-shock proteins (Hsp). The chaperones treated in this article are proteins that assist other proteins to fold, refold, travel to their place of residence (cytosol, organelle, membrane, extracellular space), and translocate across membranes. Molecular chaperones participate in a variety of physiological processes and are widespread in organisms, tissues, and cells. It follows that chaperone failure will have an impact, possibly serious, on one or more cellular function, which may lead to disease. Chaperones must recognize and interact with proteins in need of assistance or client polypeptides (e.g., nascent at the ribosome, or partially denatured by stressors), and have to interact with other chaperones because the chaperoning mechanism involves teams of chaperone molecules, i.e., multimolecular assemblies or chaperone machines. Consequently, chaperone molecules have structural domains with distinctive functions: bind the client polypeptide, interact with other chaperone molecules to build a machine, and interact with other complexes that integrate the chaperoning network. Also, various chaperones have ATP-binding and ATPase sites because the chaperoning process requires as, a rule, energy from ATP hydrolysis. Alterations in any one of these domains due to a mutation or an aberrant post-translational modification can disrupt the chaperoning process and cause diseases termed chaperonopathies. This article presents the pathologic concept of chaperonopathy with examples, and discusses the potential of using chaperones (genes or proteins) in treatment (chaperonotherapy). In addition, emerging topics within the field of study of chaperones (chaperonology) are highlighted, e.g., genomics (chaperonomics), systems biology, extracellular chaperones, and anti-chaperone antibodies.

PubMed Disclaimer

Similar articles

Cited by

LinkOut - more resources