Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Review
. 2007 Jan 1:12:371-91.
doi: 10.2741/2070.

Glutamine metabolism and signaling in the liver

Affiliations
Review

Glutamine metabolism and signaling in the liver

Dieter Häussinger et al. Front Biosci. .

Abstract

Glutamine is the most abundant amino acid in the human body and can be synthesized by almost all tissues by the glutamine synthetase (GS)-catalyzed amidation of glutamate. Hepatocytes have access to extracellular glutamine by the concentrative uptake via members of the sodium-dependent neutral amino acid transport systems N and A. Hepatic glutamine metabolism in connection with urea synthesis is importantly involved in systemic ammonia detoxication and pH regulation due to the unique regulatory properties of the liver-type glutaminase, the acinar compartimentation of urea and glutamine synthesis, and a cycling of glutamine between periportal and perivenous hepatocytes. Upregulation of GS expression in hepatocellular carcinoma is related to growth advantage and an enhanced metastatic potential. Glutamine is a potent activator of signal transduction. Recent progress concerns the understanding of glutamine-induced hepatocyte swelling and the downstream activation of integrins, Src, and MAP-kinases in the regulation of autophagic proteolysis, canalicular bile acid excretion, glycogen and fatty acid synthesis, insulin signaling, and protection from apoptosis. Most recently the first primary GS defect leading to inherited glutamine deficiency with fatal outcome was described in human. This review summarizes recent progress in the understanding of glutamine metabolism and signal transduction, which provides further rationale for the use of glutamine as a therapeutic tool.

PubMed Disclaimer

Publication types

LinkOut - more resources