Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2006 Dec;12(12):1410-6.
doi: 10.1038/nm1515. Epub 2006 Nov 26.

Regulation of osteoclast differentiation and function by the CaMK-CREB pathway

Affiliations

Regulation of osteoclast differentiation and function by the CaMK-CREB pathway

Kojiro Sato et al. Nat Med. 2006 Dec.

Abstract

Calcium (Ca(2+)) signaling is essential for a variety of cellular responses and higher biological functions. Ca(2+)/calmodulin-dependent kinases (CaMKs) and the phosphatase calcineurin activate distinct downstream pathways that are mediated by the transcription factors cAMP response element (CRE)-binding protein (CREB) and nuclear factor of activated T cells (NFAT), respectively. The importance of the calcineurin-NFAT pathway in bone metabolism has been demonstrated in osteoclasts, osteoblasts and chondrocytes. However, the contribution of the CaMK-CREB pathway is poorly understood, partly because of the difficulty of dissecting the functions of homologous family members. Here we show that the CaMKIV-CREB pathway is crucial for osteoclast differentiation and function. Pharmacological inhibition of CaMKs as well as the genetic ablation of Camk4 reduced CREB phosphorylation and downregulated the expression of c-Fos, which is required for the induction of NFATc1 (the master transcription factor for osteoclastogenesis) that is activated by receptor activator of NF-kappaB ligand (RANKL). Furthermore, CREB together with NFATc1 induced the expression of specific genes expressed by differentiated osteoclasts. Thus, the CaMK-CREB pathway biphasically functions to regulate the transcriptional program of osteoclastic bone resorption, by not only enhancing induction of NFATc1 but also facilitating NFATc1-dependent gene regulation once its expression is induced. This provides a molecular basis for a new therapeutic strategy for bone diseases.

PubMed Disclaimer

Publication types

MeSH terms

Substances