Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2005 May;3(3):309-18.
doi: 10.1111/j.1467-7652.2005.00125.x.

Production of biologically active human interleukin-4 in transgenic tobacco and potato

Affiliations
Free article

Production of biologically active human interleukin-4 in transgenic tobacco and potato

Shengwu Ma et al. Plant Biotechnol J. 2005 May.
Free article

Abstract

Interleukin-4 (IL-4) is a pleiotropic cytokine that plays a key regulatory role in the immune system. Recombinant human IL-4 (rhIL-4) offers great potential for the treatment of cancer, viral and autoimmune diseases. Unfortunately, the high production cost of IL-4 associated with conventional expression systems has, until now, limited broader clinical testing, particularly with regard to the more convenient and safer oral delivery of IL-4 as opposed to parenteral injection in patients. In this study, we investigated the feasibility of transgenic plants for the cost-effective production of rhIL-4. IL-4 expression vectors with different modifications under the control of a constitutive cauliflower mosaic virus 35S (CaMV 35S) promoter were introduced into tobacco by Agrobacterium-mediated transformation. Transgenic tobaccos expressing various levels of rhIL-4 protein were generated. Higher expression was achieved through IL-4 retention in the endoplasmic reticulum (ER), with the maximal accumulation being approximately 0.1% of total soluble protein (TSP) in the leaves. No improvement in expression was further achieved by replacing the native signal peptide of IL-4 with the plant signal peptide. The best rhIL-4-expressing vector shown in tobacco was selected and further transferred into potato plants. The analysis of transgenic tubers also revealed various levels of rhIL-4, with the highest being 0.08% of TSP. Sensitive in vitro T-cell proliferation assays showed that plant-derived rhIL-4 retained full biological activity. These results suggest that plants can be used to produce biologically active rhIL-4 and probably many other mammalian proteins of medical significance. Moreover, the production of plants expressing rhIL-4 will enable the testing of plant rhIL-4 by oral delivery for the treatment of clinical diseases.

PubMed Disclaimer

LinkOut - more resources