Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Randomized Controlled Trial
. 2006;8(6):R66.
doi: 10.1186/bcr1622.

Molecular subtypes of breast cancer in relation to paclitaxel response and outcomes in women with metastatic disease: results from CALGB 9342

Affiliations
Randomized Controlled Trial

Molecular subtypes of breast cancer in relation to paclitaxel response and outcomes in women with metastatic disease: results from CALGB 9342

Lyndsay N Harris et al. Breast Cancer Res. 2006.

Abstract

Introduction: The response to paclitaxel varies widely in metastatic breast cancer. We analyzed data from CALGB 9342, which tested three doses of paclitaxel in women with advanced disease, to determine whether response and outcomes differed according to HER2, hormone receptor, and p53 status.

Methods: Among 474 women randomly assigned to paclitaxel at a dose of 175, 210, or 250 mg/m2, adequate primary tumor tissue was available from 175. Immunohistochemistry with two antibodies and fluorescence in situ hybridization were performed to evaluate HER2 status; p53 status was determined by immunohistochemistry and sequencing. Hormone receptor status was obtained from pathology reports.

Results: Objective response rate was not associated with HER2 or p53 status. There was a trend toward a shorter median time to treatment failure among women with HER2-positive tumors (2.3 versus 4.2 months; P = 0.067). HER2 status was not related to overall survival (OS). Hormone receptor expression was not associated with differences in response but was associated with longer OS (P = 0.003). In contrast, women with p53 over-expression had significantly shorter OS than those without p53 over-expression (11.5 versus 14.4 months; P = 0.002). In addition, triple negative tumors were more frequent in African-American than in Caucasian patients, and were associated with a significant reduction in OS (8.7 versus 12.9 months; P = 0.008).

Conclusion: None of the biomarkers was predictive of treatment response in women with metastatic breast cancer; however, survival differed according to hormone receptor and p53 status. Triple negative tumors were more frequent in African-American patients and were associated with a shorter survival.

PubMed Disclaimer

Figures

Figure 1
Figure 1
Time to treatment failure and overall survival according to p53 status, as assessed by immunochemistry. (a) Time to treatment failure and (b) overall survival. Patients were classified as p53 positive (solid line) or p53 negative (dashed line) as determined by immunochemistry with D07 antibody. A positive case is defined as ≥10% positive, localization of nuclear or nuclear and cytoplasmic, and intensity of stain weak, moderate, or intense. IHC, immunohistochemistry.
Figure 2
Figure 2
Time to treatment failure and overall survival for triple-negative subgroup, by race. Time to treatment failure: (a) not triple negative and (b) triple negative. Overall survival: (c) not triple negative and (d) triple negative. Patients were classified by race (African-American [dashed line] or Caucasian [solid line]) and divided into subsets based on triple-negative status. Exploratory analysis to investigate the interaction of triple negative status and race.

References

    1. Henderson IC, Berry DA, Demetri GD, Cirrincione CT, Goldstein LJ, Martino S, Ingle JN, Cooper MR, Hayes DF, Tkaczuk KH, et al. Improved outcomes from adding sequential paclitaxel but not from escalating doxorubicin dose in an adjuvant chemotherapy regimen for patients with node-positive primary breast cancer. J Clin Oncol. 2003;21:976–983. doi: 10.1200/JCO.2003.02.063. - DOI - PubMed
    1. Mamounas EP, Bryant J, Lembersky B, Fehrenbacher L, Sedlacek SM, Fisher B, Wickerham DL, Yothers G, Soran A, Wolmark N. Paclitaxel after doxorubicin plus cyclophosphamide as adjuvant chemotherapy for node-positive breast cancer: results from NSABP B-28. J Clin Oncol. 2005;23:3686–3696. doi: 10.1200/JCO.2005.10.517. - DOI - PubMed
    1. Reichman BS, Seidman AD, Crown JP, Heelan R, Hakes TB, Lebwohl DE, Gilewski TA, Surbone A, Currie V, Hudis CA, et al. Paclitaxel and recombinant human granulocyte colony-stimulating factor as initial chemotherapy for metastatic breast cancer. J Clin Oncol. 1993;11:1943–1951. - PubMed
    1. Seidman AD, Tiersten A, Hudis C, Gollub M, Barrett S, Yao TJ, Lepore J, Gilewski T, Currie V, Crown J, et al. Phase II trial of paclitaxel by 3-hour infusion as initial and salvage chemotherapy for metastatic breast cancer. J Clin Oncol. 1995;13:2575–2581. - PubMed
    1. Nabholtz JM, Gelmon K, Bontenbal M, Spielmann M, Catimel G, Conte P, Klaassen U, Namer M, Bonneterre J, Fumoleau P, Winograd B. Multicenter, randomized comparative study of two doses of paclitaxel in patients with metastatic breast cancer. J Clin Oncol. 1996;14:1858–1867. - PubMed

Publication types