Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2006 Dec;55(12):3418-28.
doi: 10.2337/db06-0399.

OXPAT/PAT-1 is a PPAR-induced lipid droplet protein that promotes fatty acid utilization

Affiliations

OXPAT/PAT-1 is a PPAR-induced lipid droplet protein that promotes fatty acid utilization

Nathan E Wolins et al. Diabetes. 2006 Dec.

Abstract

Lipid droplet proteins of the PAT (perilipin, adipophilin, and TIP47) family regulate cellular neutral lipid stores. We have studied a new member of this family, PAT-1, and found that it is expressed in highly oxidative tissues. We refer to this protein as "OXPAT." Physiologic lipid loading of mouse liver by fasting enriches OXPAT in the lipid droplet tissue fraction. OXPAT resides on lipid droplets with the PAT protein adipophilin in primary cardiomyocytes. Ectopic expression of OXPAT promotes fatty acid-induced triacylglycerol accumulation, long-chain fatty acid oxidation, and mRNAs associated with oxidative metabolism. Consistent with these observations, OXPAT is induced in mouse adipose tissue, striated muscle, and liver by physiological (fasting), pathophysiological (insulin deficiency), pharmacological (peroxisome proliferator-activated receptor [PPAR] agonists), and genetic (muscle-specific PPARalpha overexpression) perturbations that increase fatty acid utilization. In humans with impaired glucose tolerance, PPARgamma agonist treatment induces adipose OXPAT mRNA. Further, adipose OXPAT mRNA negatively correlates with BMI in nondiabetic humans. Our collective data in cells, mice, and humans suggest that OXPAT is a marker for PPAR activation and fatty acid oxidation. OXPAT likely contributes to adaptive responses to the fatty acid burden that accompanies fasting, insulin deficiency, and overnutrition, responses that are defective in obesity and type 2 diabetes.

PubMed Disclaimer

Similar articles

Cited by

Publication types

MeSH terms