Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Comparative Study
. 1991 May 8;307(2):200-13.
doi: 10.1002/cne.903070204.

Activity-dependent regulation of glutamic acid decarboxylase in the rat barrel cortex: effects of neonatal versus adult sensory deprivation

Affiliations
Comparative Study

Activity-dependent regulation of glutamic acid decarboxylase in the rat barrel cortex: effects of neonatal versus adult sensory deprivation

N D Akhtar et al. J Comp Neurol. .

Abstract

Immunocytochemical techniques were used to study the effects of tactual deprivation on glutamic acid decarboxylase (GAD) containing neurons in rat somatosensory barrel cortex. In normal rats GAD immunoreactive neurons and puncta are present in all laminae, with dense patches of GAD immunoreactive puncta centered on the barrels in lamina IV. Trimming whiskers of adult rats leads to a reversible decrease of GAD immunoreactivity in barrels corresponding to trimmed hairs. Intensity of GAD staining also is reversibly altered in supragranular laminae of nondeprived barrel columns flanked by deprived barrels. This indicates that GAD levels in the barrel cortex ordinarily fluctuate with changes in sensory input. By contrast, animals whose whiskers are trimmed from birth have normal GAD staining in both deprived and nondeprived barrels. Moreover, if trimmed whiskers of neonatally deprived animals are allowed to grow to normal lengths and are retrimmed later in adulthood GAD staining is not affected. Thus early tactual deprivation disrupts mechanisms that permit modulation of transmitter enzyme levels in cortical neurons following changes in sensory experience.

PubMed Disclaimer

Publication types

Substances

LinkOut - more resources