Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 1991 Mar;42(3):185-9.
doi: 10.1016/0952-3278(91)90156-y.

Inhibition of iloprost of the contractile effect of noradrenaline in mesenteric artery rings: evidence for a possible calcium-dependent mechanism

Affiliations

Inhibition of iloprost of the contractile effect of noradrenaline in mesenteric artery rings: evidence for a possible calcium-dependent mechanism

E Demirel et al. Prostaglandins Leukot Essent Fatty Acids. 1991 Mar.

Abstract

Iloprost caused a concentration-dependent decrease in the response to noradrenaline in the rabbit isolated endothelium denuded rings from superior mesenteric artery but not thoracic aorta. Similar inhibition was obtained by verapamil using identical concentrations. In Ca(2+)-free EGTA containing medium noradrenaline both at lower and higher concentrations elicited a reduced contractile response and further addition of Ca2+ (2.5 mM) to the medium produced a second contraction in both mesenteric artery and aortic rings which was significantly and equally inhibited by iloprost and verapamil using identical concentrations in mesenteric artery but not in aortic rings. Prior addition of iloprost to the medium did not protect the inhibitory effect of phenoxybenzamine against noradrenaline-induced contraction. These results were taken as an evidence for the possible Ca2+ entry reducing effect of iloprost in mesenteric artery but not thoracic aorta. These results were also taken as an indirect evidence supporting the hypothesis that increased synthesis of prostacyclin by noradrenaline in the vascular wall may inhibit the contractile effect of the agonist by a (-) feedback mechanism mediated by Ca2+ entry into the vascular smooth muscle.

PubMed Disclaimer

Similar articles

Cited by

Publication types

MeSH terms

LinkOut - more resources