Inhibitory effect of obovatol on nitric oxide production and activation of NF-kappaB/MAP kinases in lipopolysaccharide-treated RAW 264.7cells
- PMID: 17134693
- DOI: 10.1016/j.ejphar.2006.10.054
Inhibitory effect of obovatol on nitric oxide production and activation of NF-kappaB/MAP kinases in lipopolysaccharide-treated RAW 264.7cells
Abstract
The components of Magnolia obovata are known to have many pharmacological activities. In this study, we investigated the effects of obovatol, a neolignan compound isolated from the leaves of M. obovata, on nitric oxide (NO) production and NF-kappaB activity in lipopolysaccharide (LPS)-activated RAW 264.7 cells. The results show that obovatol (1-5 microM) significantly inhibited LPS-induced NO production in a concentration-dependent manner (IC(50): 0.91 microM). Consistent with the inhibitory effect on NO production, obovatol inhibits the expression of inducible nitric oxide synthase and cyclooxygenase-2 expression. Furthermore, obovatol suppressed NF-kappaB (p50 and p65) translocation to the nucleus as well as IkappaB release resulting in the inhibition of the DNA binding activity of the NF-kappaB. Obovatol also inhibited c-Jun N-terminal kinase (JNK) and extracellular signal-regulated kinase (ERK) signal, which are the most significantly involved signal in NO production and NF-kappaB activation. When the cells were treated with the combination of obovatol with U0126 (an ERK inhibitor) or SP600125 (a JNK inhibitor) as well as with SC-514 (an IKK2 inhibitor), much more inhibition of NO production was observed than that by obovatol alone. The present results suggest that obovatol has an inhibitory effect on NO production through the inhibition of NF-kappaB/MAPK activity, and thus can be used as an anti-inflammatory agent.
Publication types
MeSH terms
Substances
LinkOut - more resources
Full Text Sources
Research Materials