Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2007 Mar;74(4):874-80.
doi: 10.1007/s00253-006-0731-9. Epub 2006 Nov 29.

Phytohormone production by three strains of Bradyrhizobium japonicum and possible physiological and technological implications

Affiliations

Phytohormone production by three strains of Bradyrhizobium japonicum and possible physiological and technological implications

L Boiero et al. Appl Microbiol Biotechnol. 2007 Mar.

Abstract

The aim of this work was to evaluate phytohormone biosynthesis, siderophores production, and phosphate solubilization in three strains (E109, USDA110, and SEMIA5080) of Bradyrhizobium japonicum, most commonly used for inoculation of soybean and nonlegumes in USA, Canada, and South America. Siderophore production and phosphate solubilization were evaluated in selective culture conditions, which had negative results. Indole-3-acetic acid (IAA), gibberellic acid (GA(3)), and abscisic acid (ABA) production were analyzed by gas chromatography-mass spectrometry (GC-MS). Ethylene and zeatin biosynthesis were determined by GS-flame ionization detection and high-performance liquid chromatography (HPLC-UV), respectively. IAA, zeatin, and GA(3) were found in all three strains; however, their levels were significantly higher (p < 0.01) in SEMIA5080 (3.8 microg ml(-1)), USDA110 (2.5 microg ml(-1)), and E109 (0.87 microg ml(-1)), respectively. ABA biosynthesis was detected only in USDA110 (0.019 microg ml(-1)). Ethylene was found in all three strains, with highest production rate (18.1 ng ml(-1) h(-1)) in E109 cultured in yeast extract mannitol medium plus L-methionine. This is the first report of IAA, GA(3), zeatin, ethylene, and ABA production by B. japonicum in pure cultures, using quantitative physicochemical methodology. The three strains have differential capability to produce the five major phytohormones and this fact may have an important technological implication for inoculant formulation.

PubMed Disclaimer

Publication types

MeSH terms

LinkOut - more resources