Prediction of liquid chromatographic retention times of peptides generated by protease digestion of the Escherichia coli proteome using artificial neural networks
- PMID: 17137332
- DOI: 10.1021/pr0602038
Prediction of liquid chromatographic retention times of peptides generated by protease digestion of the Escherichia coli proteome using artificial neural networks
Abstract
We developed a computational method to predict the retention times of peptides in HPLC using artificial neural networks (ANN). We performed stepwise multiple linear regressions and selected for ANN input amino acids that significantly affected the LC retention time. Unlike conventional linear models, the trained ANN accurately predicted the retention time of peptides containing up to 50 amino acid residues. In 834 peptides, there was a strong correlation (R2 = 0.928) between measured and predicted retention times. We demonstrated the utility of our method by the prediction of the retention time of 121,273 peptides resulting from LysC-digestion of the Escherichia coli proteome. Our approach is useful for the proteome-wide characterization of peptides and the identification of unknown peptide peaks obtained in proteome analysis.
Similar articles
-
Informatics for peptide retention properties in proteomic LC-MS.Proteomics. 2008 Feb;8(4):787-98. doi: 10.1002/pmic.200700692. Proteomics. 2008. PMID: 18214845 Review.
-
Comprehensive comparison of eight statistical modelling methods used in quantitative structure-retention relationship studies for liquid chromatographic retention times of peptides generated by protease digestion of the Escherichia coli proteome.J Chromatogr A. 2009 Apr 10;1216(15):3107-16. doi: 10.1016/j.chroma.2009.01.086. Epub 2009 Jan 31. J Chromatogr A. 2009. PMID: 19232620
-
Liquid chromatography at critical conditions: comprehensive approach to sequence-dependent retention time prediction.Anal Chem. 2006 Nov 15;78(22):7770-7. doi: 10.1021/ac060913x. Anal Chem. 2006. PMID: 17105170
-
Improving peptide identification in proteome analysis by a two-dimensional retention time filtering approach.J Proteome Res. 2009 Aug;8(8):4109-15. doi: 10.1021/pr900064b. J Proteome Res. 2009. PMID: 19492844
-
Predictions of peptides' retention times in reversed-phase liquid chromatography as a new supportive tool to improve protein identification in proteomics.Proteomics. 2009 Feb;9(4):835-47. doi: 10.1002/pmic.200800544. Proteomics. 2009. PMID: 19160394 Review.
Cited by
-
Prediction of Chromatographic Elution Order of Analytical Mixtures Based on Quantitative Structure-Retention Relationships and Multi-Objective Optimization.Molecules. 2020 Jul 6;25(13):3085. doi: 10.3390/molecules25133085. Molecules. 2020. PMID: 32640765 Free PMC article.
-
DeepPep: Deep proteome inference from peptide profiles.PLoS Comput Biol. 2017 Sep 5;13(9):e1005661. doi: 10.1371/journal.pcbi.1005661. eCollection 2017 Sep. PLoS Comput Biol. 2017. PMID: 28873403 Free PMC article.
-
Phosphopeptide elution times in reversed-phase liquid chromatography.J Chromatogr A. 2007 Nov 16;1172(1):9-18. doi: 10.1016/j.chroma.2007.09.032. Epub 2007 Sep 18. J Chromatogr A. 2007. PMID: 17935722 Free PMC article.
-
Locus-specific Retention Predictor (LsRP): A Peptide Retention Time Predictor Developed for Precision Proteomics.Sci Rep. 2017 Mar 17;7:43959. doi: 10.1038/srep43959. Sci Rep. 2017. PMID: 28303880 Free PMC article.
-
Correctness of protein identifications of Bacillus subtilis proteome with the indication on potential false positive peptides supported by predictions of their retention times.J Biomed Biotechnol. 2010;2010:718142. doi: 10.1155/2010/718142. Epub 2009 Dec 23. J Biomed Biotechnol. 2010. PMID: 20069061 Free PMC article.
Publication types
MeSH terms
Substances
LinkOut - more resources
Full Text Sources
Other Literature Sources