Developmental biology. The Turing model comes of molecular age
- PMID: 17138885
- PMCID: PMC4383235
- DOI: 10.1126/science.1136396
Developmental biology. The Turing model comes of molecular age
Abstract
Molecular analyses of hair follicle formation provide evidence to support the most well-known mathematical model for biological pattern formation.
Figures

Comment on
-
WNT and DKK determine hair follicle spacing through a reaction-diffusion mechanism.Science. 2006 Dec 1;314(5804):1447-50. doi: 10.1126/science.1130088. Epub 2006 Nov 2. Science. 2006. PMID: 17082421
Similar articles
-
WNT and DKK determine hair follicle spacing through a reaction-diffusion mechanism.Science. 2006 Dec 1;314(5804):1447-50. doi: 10.1126/science.1130088. Epub 2006 Nov 2. Science. 2006. PMID: 17082421
-
Localization of Shh expression by Wnt and Eda affects axial polarity and shape of hairs.Dev Biol. 2007 May 1;305(1):246-61. doi: 10.1016/j.ydbio.2007.02.010. Epub 2007 Feb 16. Dev Biol. 2007. PMID: 17376426
-
Hairy math: insights into hair-follicle spacing and orientation.Cell. 2007 Jan 12;128(1):17-20. doi: 10.1016/j.cell.2006.12.020. Cell. 2007. PMID: 17218249
-
Turing patterns in development: what about the horse part?Curr Opin Genet Dev. 2012 Dec;22(6):578-84. doi: 10.1016/j.gde.2012.11.013. Epub 2012 Dec 28. Curr Opin Genet Dev. 2012. PMID: 23276682 Review.
-
Canonical WNT signalling controls hair follicle spacing.Cell Adh Migr. 2007 Jul-Sep;1(3):149-51. doi: 10.4161/cam.1.3.5073. Epub 2007 Jul 23. Cell Adh Migr. 2007. PMID: 19262137 Free PMC article. Review.
Cited by
-
Turing's model for biological pattern formation and the robustness problem.Interface Focus. 2012 Aug 6;2(4):487-96. doi: 10.1098/rsfs.2011.0113. Epub 2012 Feb 8. Interface Focus. 2012. PMID: 23919129 Free PMC article.
-
Stability analysis of non-autonomous reaction-diffusion systems: the effects of growing domains.J Math Biol. 2010 Jul;61(1):133-64. doi: 10.1007/s00285-009-0293-4. Epub 2009 Aug 29. J Math Biol. 2010. PMID: 19727733
-
Stationary multiple spots for reaction-diffusion systems.J Math Biol. 2008 Jul;57(1):53-89. doi: 10.1007/s00285-007-0146-y. Epub 2007 Dec 5. J Math Biol. 2008. PMID: 18058100
-
Transition from alternating stripes to alternating labyrinths in oscillatory media.Phys Rev E. 2025 Mar;111(3):L032201. doi: 10.1103/PhysRevE.111.L032201. Phys Rev E. 2025. PMID: 40247508 Free PMC article.
-
Pattern formation today.Int J Dev Biol. 2009;53(5-6):653-8. doi: 10.1387/ijdb.082594cc. Int J Dev Biol. 2009. PMID: 19557673 Free PMC article. Review.
References
-
- Sick S, Reinker S, Timmer J, Schlake T. Science. 2006;314:1447. published online 2 November 2006 (10.1126/science.1130088) - PubMed
-
- Turing AM. Philos. Trans. R. Soc. London Ser. B. 1952;237:37.
-
- Akam M. Nature. 1989;341:282. - PubMed
-
- Nagorcka BN. Biosystems. 1983–1984;16:323. - PubMed
-
- Jung H-S, et al. Dev. Biol. 1998;196:11. - PubMed
Publication types
MeSH terms
Substances
Grants and funding
LinkOut - more resources
Full Text Sources