Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2007;40(9):2044-52.
doi: 10.1016/j.jbiomech.2006.09.026. Epub 2006 Nov 30.

Computational simulation of hypertrophic cardiomyopathy mutations in troponin I: influence of increased myofilament calcium sensitivity on isometric force, ATPase and [Ca2+]i

Affiliations

Computational simulation of hypertrophic cardiomyopathy mutations in troponin I: influence of increased myofilament calcium sensitivity on isometric force, ATPase and [Ca2+]i

Aya Kataoka et al. J Biomech. 2007.

Abstract

Familial hypertrophic cardiomyopathy (FHC) is an inherited disease that is characterized by ventricular hypertrophy, cardiac arrhythmias and increased risk of premature sudden death. FHC is caused by autosomal-dominant mutations in genes for a number of sarcomeric proteins; many mutations in Ca(2+)-regulatory proteins of the cardiac thin filament are associated with increased Ca(2+) sensitivity of myofilament function. Computational simulations were used to investigate the possibility that these mutations could affect the Ca(2+) transient and mechanical response of a myocyte during a single cardiac cycle. We used existing experimental data for specific mutations of cardiac troponin I that exhibit increased Ca(2+) sensitivity in physiological and biophysical assays. The simulated Ca(2+) transients were used as input for a three-dimensional half-sarcomere biomechanical model with filament compliance to predict the resulting force. Mutations with the highest Ca(2+) affinity (lowest K(m)) values, exhibit the largest decrease in peak Ca(2+) assuming a constant influx of Ca(2+) into the cytoplasm; they also prolong Ca(2+) removal but have little effect on diastolic Ca(2+). Biomechanical model results suggest that these cTnI mutants would increase peak force despite the decrease in peak [Ca(2+)](i). There is a corresponding increase in net ATP hydrolysis, with no change in tension cost (ATP hydrolyzed per unit of time-integrated tension). These simulations suggest that myofilament-initiated hypertrophic signaling could be associated with decreased [Ca(2+)](i), increased stress/strain, and/or increased ATP flux.

PubMed Disclaimer

Publication types

MeSH terms

LinkOut - more resources