Wide-field subdiffraction imaging by accumulated binding of diffusing probes
- PMID: 17142314
- PMCID: PMC1748151
- DOI: 10.1073/pnas.0609643104
Wide-field subdiffraction imaging by accumulated binding of diffusing probes
Abstract
A method is introduced for subdiffraction imaging that accumulates points by collisional flux. It is based on targeting the surface of objects by fluorescent probes diffusing in the solution. Because the flux of probes at the object is essentially constant over long time periods, the examination of an almost unlimited number of individual probe molecules becomes possible. Each probe that hits the object and that becomes immobilized is located with high precision by replacing its point-spread function by a point at its centroid. Images of lipid bilayers, contours of these bilayers, and large unilamellar vesicles are shown. A spatial resolution of approximately 25 nm is readily achieved. The ability of the method to effect rapid nanoscale imaging and spatial resolution below Rayleigh criterion and without the necessity for labeling with fluorescent probes is proven.
Conflict of interest statement
The authors declare no conflict of interest.
Figures






Similar articles
-
Real-time computation of subdiffraction-resolution fluorescence images.J Microsc. 2010 Jan;237(1):12-22. doi: 10.1111/j.1365-2818.2009.03287.x. J Microsc. 2010. PMID: 20055915
-
The use of cobalt ions as a collisional quencher to probe surface charge and stability of fluorescently labeled bilayer vesicles.Biochim Biophys Acta. 1985 Sep 10;818(3):365-72. doi: 10.1016/0005-2736(85)90011-2. Biochim Biophys Acta. 1985. PMID: 4041444
-
Fast, Background-Free DNA-PAINT Imaging Using FRET-Based Probes.Nano Lett. 2017 Oct 11;17(10):6428-6434. doi: 10.1021/acs.nanolett.7b03425. Epub 2017 Sep 21. Nano Lett. 2017. PMID: 28871786
-
Recent progress of self-immobilizing and self-precipitating molecular fluorescent probes for higher-spatial-resolution imaging.Biomaterials. 2023 Oct;301:122281. doi: 10.1016/j.biomaterials.2023.122281. Epub 2023 Aug 25. Biomaterials. 2023. PMID: 37643487 Review.
-
Imaging single molecules using total internal reflection fluorescence microscopy (TIRFM).Cold Spring Harb Protoc. 2010 Mar;2010(3):pdb.top73. doi: 10.1101/pdb.top73. Cold Spring Harb Protoc. 2010. PMID: 20194477 Review.
Cited by
-
Fast widefield scan provides tunable and uniform illumination optimizing super-resolution microscopy on large fields.Nat Commun. 2021 May 24;12(1):3077. doi: 10.1038/s41467-021-23405-4. Nat Commun. 2021. PMID: 34031402 Free PMC article.
-
Visualizing the Heterogeneity in Homogeneous Supramolecular Polymers.J Am Chem Soc. 2024 Jul 24;146(29):19974-19985. doi: 10.1021/jacs.4c03562. Epub 2024 Jul 10. J Am Chem Soc. 2024. PMID: 38986035 Free PMC article.
-
Graphene- and metal-induced energy transfer for single-molecule imaging and live-cell nanoscopy with (sub)-nanometer axial resolution.Nat Protoc. 2021 Jul;16(7):3695-3715. doi: 10.1038/s41596-021-00558-6. Epub 2021 Jun 7. Nat Protoc. 2021. PMID: 34099942
-
Dual objective fluorescence microscopy for single molecule imaging applications.Proc SPIE Int Soc Opt Eng. 2009 Feb;7184:71840C. doi: 10.1117/12.808259. Epub 2009 Mar 3. Proc SPIE Int Soc Opt Eng. 2009. PMID: 22905311 Free PMC article.
-
Large-Scale and Defect-Free Silicon Metamaterials with Magnetic Response.Sci Rep. 2016 May 19;6:25760. doi: 10.1038/srep25760. Sci Rep. 2016. PMID: 27194105 Free PMC article.
References
-
- Tinnefeld P, Sauer M. Angew Chem Int Ed. 2005;44:2642–2671. - PubMed
-
- Yildiz A, Forkey JN, McKinney SA, Ha T, Goldman YE, Selvin PR. Science. 2003;300:2061–2065. - PubMed
-
- Forster T. Ann Phys. 1948;2:55–75.
-
- Muls B, Uji-i H, Melnikov S, Moussa A, Verheijen W, Soumillion J-P, Josemon J, Mullen K, Hofkens J. ChemPhysChem. 2005;6:2286–2294. - PubMed
Publication types
MeSH terms
Substances
Grants and funding
LinkOut - more resources
Full Text Sources
Other Literature Sources