Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Review
. 2005;1(3):233-41.
doi: 10.1385/SCR:1:3:233.

Gastrointestinal stem cells and cancer: bridging the molecular gap

Affiliations
Review

Gastrointestinal stem cells and cancer: bridging the molecular gap

S J Leedham et al. Stem Cell Rev. 2005.

Abstract

Cancer is believed to be a disease involving stem cells. The digestive tract has a very high cancer prevalence partly owing to rapid epithelial cell turnover and exposure to dietary toxins. Work on the hereditary cancer syndromes including familial adenomatous polyposis (FAP) has led to significant advances, including the adenoma-carcinoma sequence. The initial mutation involved in this stepwise progression is in the "gatekeeper" tumor suppressor gene adenomatous polyposis coli (APC). In FAP somatic, second hits in this gene are nonrandom events, selected for by the position of the germ-line mutation. Extensive work in both the mouse and human has shown that crypts are clonal units and mutated stem cells may develop a selective advantage, eventually forming a clonal crypt population by a process called "niche succession." Aberrant crypt foci are then formed by the longitudinal division of crypts into two daughter units--crypt fission. The early growth of adenomas is contentious with two main theories, the "top-down" and "bottom-up" hypotheses, attempting to explain the spread of dysplastic tissue in the bowel. Initial X chromosome inactivation studies suggested that colorectal tumors were monoclonal; however, work on a rare XO/XY human patient with FAP and chimeric Min mice showed that 76% of adenomas were polyclonal. A reduction in tumor multiplicity in the chimeric mouse model has been achieved by the introduction of a homozygous tumor resistance allele. This model has been used to suggest that short-range interaction between adjacent initiated crypts, not random polyp collision, is responsible for tumor polyclonality.

PubMed Disclaimer

Similar articles

Cited by

References

    1. Cancer. 1988 Apr 1;61(7):1359-63 - PubMed
    1. J Clin Pathol. 1999 May;52(5):321-33 - PubMed
    1. Mol Cell Probes. 1997 Jun;11(3):217-28 - PubMed
    1. Science. 1987 Oct 9;238(4824):193-7 - PubMed
    1. Development. 1988 Aug;103(4):785-90 - PubMed

LinkOut - more resources