Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Comparative Study
. 1991 Aug 6;30(31):7873-8.
doi: 10.1021/bi00245a029.

X-ray scattering study of hagfish protease inhibitor, a protein structurally related to complement and alpha 2-macroglobulin

Affiliations
Comparative Study

X-ray scattering study of hagfish protease inhibitor, a protein structurally related to complement and alpha 2-macroglobulin

R Osterberg et al. Biochemistry. .

Abstract

A protease inhibitor from hagfish blood plasma, homologous to human alpha 2-macroglobulin, has been studied in solution using small-angle X-ray scattering; the radius of gyration, R, was found to be 7.0 nm, the molecular weight 340,000 +/- 20,000, and the largest distance within the molecule, Dmax, 22 nm. When the inhibitor reacts with chymotrypsin, its 1:1 chymotrypsin complex is found to be more compact than the native molecule, R = 6.1 nm. A very similar conformational change is observed after the protein is reacted with methylamine. The data are consistent with models consisting of two equal elliptic cylinders with the same size as the one used as a model for the complement proteins C3 and C4 [cf. Osterberg et al. (1989) Eur. J. Biochem. 183, 507-511]. In the model for the native protein, these cylinders are arranged in an extended form, and in the one for the methylamine derivative (or chymotrypsin complex), they are closer together so that the projection of their elliptic surfaces forms an angle of about 70 degrees. These models for the hagfish protease inhibitor were expanded to models for the twice as large human alpha 2-macroglobulin using symmetry operations, and the resulting alpha 2-macroglobulin models were found to agree with those emerged from earlier studies involving electron microscopy and X-ray scattering methods.

PubMed Disclaimer

Similar articles

Cited by

Publication types

LinkOut - more resources