Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2007 Jan;17(1):239-44.

Role of the tumor microenvironment in the activity and expression of the p-glycoprotein in human colon carcinoma cells

Affiliations
  • PMID: 17143504

Role of the tumor microenvironment in the activity and expression of the p-glycoprotein in human colon carcinoma cells

Christopher Lotz et al. Oncol Rep. 2007 Jan.

Abstract

The metabolic microenvironment of solid tumors is characterized by an oxygen deficiency and increased anaerobic glycolysis leading to extracellular acidosis and ATP depletion, which in turn may affect other energy-dependent cellular pathways. Since many tumors overexpress active drug transporters (e.g. the p-glycoprotein) leading to a multidrug-resistant phenotype, this study analyzes the impact of the different aspects of the extracellular microenvironment (hypoxia and acidosis) on the activity and expression of the p-glycoprotein (pGP) in the human colon carcinoma cell line LS513. For up to 24 h cells were exposed to hypoxia (pO2<0.5 mmHg), an acidic extracellular environment (pH 6.6), or the combination of hypoxia and acidosis. Under hypoxic conditions (at a normal pH), the pGP activity (measured by the daunorubicin efflux) and the pGP expression were not markedly altered. Under acidic conditions, however, the pGP-mediated drug efflux was increased, an effect which was even more pronounced when the cells were exposed to hypoxia and acidosis simultaneously (increasing the pGP-activity by 70%). The cellular pGP expression remained almost constant under these conditions, indicating that the increased transport rate results from a functional modulation. The findings of the present study indicate that the parameters of the tumor microenviroment (especially extracellular acidosis) can increase the pGP-mediated drug efflux, an effect which may explain the reduced cytotoxicity of chemotherapeutic agents in hypoxic/acidic tumors.

PubMed Disclaimer

Similar articles

Cited by

Publication types

MeSH terms

Substances

LinkOut - more resources