Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 1991 Sep;10(9):2559-67.
doi: 10.1002/j.1460-2075.1991.tb07796.x.

Analysis of CpG methylation and genomic footprinting at the tyrosine aminotransferase gene: DNA methylation alone is not sufficient to prevent protein binding in vivo

Affiliations

Analysis of CpG methylation and genomic footprinting at the tyrosine aminotransferase gene: DNA methylation alone is not sufficient to prevent protein binding in vivo

F Weih et al. EMBO J. 1991 Sep.

Abstract

Specific DNA sequences from several DNase I hypersensitive sites located upstream of the tyrosine aminotransferase (TAT) gene are bound by ubiquitous nuclear factors in vitro. Genomic footprinting has shown, however, that proteins are excluded from their potential binding sites in cells where the gene is inactive and that the absence of in vivo footprints is correlated with CpG methylation and altered chromatin structures at these sites. In vitro, interactions of proteins with sequences of the TAT gene, including binding of the transcription factor CREB to the cAMP-responsive element (CRE), are prevented by a methylated CpG dinucleotide in the respective binding sites, suggesting that methylation of DNA might be sufficient to exclude proteins from their sites in vivo. To test directly whether the absence of in vivo footprints is the result of DNA methylation, we treated two different cell lines with 5-azacytidine to demethylate CpG dinucleotides. While genomic sequencing confirmed demethylation at two widely separated regions upstream of the TAT promoter, no footprints appeared in these cell lines, even though proteins capable of binding these sites in vitro were present in the nuclei. Thus, the simple model whereby protein exclusion in vivo is caused solely by DNA methylation is not appropriate in this case. The nucleosomal organization of the potential binding sites suggests that chromatin structure is a dominant determinant in maintaining the inactive state of these sites.

PubMed Disclaimer

Similar articles

Cited by

References

    1. Genes Dev. 1988 Jun;2(6):698-706 - PubMed
    1. Proc Natl Acad Sci U S A. 1966 Jul;56(1):296-303 - PubMed
    1. Cell. 1986 Feb 28;44(4):535-43 - PubMed
    1. Proc Natl Acad Sci U S A. 1986 Sep;83(18):6682-6 - PubMed
    1. Cell. 1987 Apr 10;49(1):29-38 - PubMed

Publication types