Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Comparative Study
. 2006 Dec;44(12):611-21.
doi: 10.1002/dvg.20256.

Genetic targeting of principal neurons in neocortex and hippocampus of NEX-Cre mice

Affiliations
Comparative Study

Genetic targeting of principal neurons in neocortex and hippocampus of NEX-Cre mice

Sandra Goebbels et al. Genesis. 2006 Dec.

Abstract

Conditional mutagenesis permits the cell type-specific analysis of gene functions in vivo. Here, we describe a mouse line that expresses Cre recombinase under control of regulatory sequences of NEX, a gene that encodes a neuronal basic helix-loop-helix (bHLH) protein. To mimic endogenous NEX expression in the dorsal telencephalon, the Cre recombinase gene was targeted into the NEX locus by homologous recombination in ES cells. The Cre expression pattern was analyzed following breeding into different lines of lacZ-indicator mice. Most prominent Cre activity was observed in neocortex and hippocampus, starting from around embryonic day 11.5. Within the dorsal telencephalon, Cre-mediated recombination marked pyramidal neurons and dentate gyrus mossy and granule cells, but was absent from proliferating neural precursors of the ventricular zone, interneurons, oligodendrocytes, and astrocytes. Additionally, we identified formerly unknown domains of NEX promoter activity in mid- and hindbrain. The NEX-Cre mouse will be a valuable tool for behavioral research and the conditional inactivation of target genes in pyramidal neurons of the dorsal telencephalon.

PubMed Disclaimer

Similar articles

Cited by

Publication types

MeSH terms

LinkOut - more resources