Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2005 Nov;3(6):613-20.
doi: 10.1111/j.1467-7652.2005.00154.x.

High-yield production of authentic human growth hormone using a plant virus-based expression system

Affiliations
Free article

High-yield production of authentic human growth hormone using a plant virus-based expression system

Mario Gils et al. Plant Biotechnol J. 2005 Nov.
Free article

Abstract

We describe here a high-yield transient expression system for the production of human growth hormone (hGH, or somatotropin) in transfected Nicotiana benthamiana leaves. The system is based on a recently described plant virus-based modular expression vector [Gleba, Y., Marillonnet, S. and Klimyuk, V. (2004) Engineering viral expression vectors for plants: the 'full virus' and the 'deconstructed virus' strategies. Curr. Opin. Plant Biol. 7, 182-188; Marillonnet, S., Giritch, A., Gils, M., Kandzia, R., Klimyuk, V. and Gleba, Y. (2004) In planta engineering of viral RNA replicons: efficient assembly by recombination of DNA modules delivered by Agrobacterium. Proc. Natl. Acad. Sci. USA, 101, 6852-6857], and represents a simple and fast alternative to stable transformation. By using various combinations of provector modules, hGH was produced in three compartments of the cell: the apoplast, the chloroplast and the cytosol. We found that targeting to the apoplast provided the highest amount of correctly processed and biologically active hGH, with a yield of up to 10% of total soluble protein or 1 mg per gram of fresh weight leaf biomass. These results indicate that the use of viral vectors for high-yield production of human therapeutic proteins in plants by transient expression provides an attractive alternative to production protocols using standard expression vectors in transgenic or transplastomic plants.

PubMed Disclaimer

Similar articles

Cited by

LinkOut - more resources