Mutagenicity of diesel exhaust particles mediated by cell-particle interaction in mammalian cells
- PMID: 17147977
- DOI: 10.1016/j.tox.2006.10.007
Mutagenicity of diesel exhaust particles mediated by cell-particle interaction in mammalian cells
Abstract
Diesel exhaust particle (DEP) has been identified as a class 2A human carcinogen and closely related to the increased incidence of respiratory allergy, cardiopulmonary morbidity and mortality, and risk of lung cancer. However, the molecular mechanisms of DEP mutagenicity/carcinogenicity are still largely unknown. In the present study, we focused on the mutagenicity of DEPs in human-hamster hybrid (A(L)) cells and evaluated the role of cell-particle interaction in mediating mutagenic process. We found that DEPs formed micron-sized aggregates in the medium and located mainly in large cytoplasmic vacuoles of cells by 24h treatment. The cellular granularity was increased by DEP treatment in a dose-dependent manner. DEPs resulted in a dose-dependent increase of mutation yield at CD59 locus in A(L) cells, while inflicting minimal cytotoxicity. There was a more than two-fold increase of mutation yield at CD59 locus in A(L) cells exposed to DEPs at a dose of 50mug/ml. Such induction was significantly reduced by concurrent treatment with phagocytosis inhibitors, cytochalasin B and ammonium chloride (p<0.05). These results provided direct evidence that DEPs was mutagenic in mammalian cells and that cell-particle interaction played an essential role in the process.
Publication types
MeSH terms
Substances
LinkOut - more resources
Full Text Sources
Miscellaneous
