Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2006 Dec 14;110(49):13232-7.
doi: 10.1021/jp0633594.

Polyacene spacers in intramolecular magnetic coupling

Affiliations

Polyacene spacers in intramolecular magnetic coupling

Md Ehesan Ali et al. J Phys Chem A. .

Abstract

We predict the intramolecular magnetic exchange coupling constant (J) for eleven nitronyl nitroxide diradicals (NN) with different linear and angular polyacene couplers from broken-symmetry density functional treatment. For the linear acene couplers, J initially decreases with increase in the number of fused rings. But from anthracene coupler onward, the J value increases with the number of benzenoid rings due to an increasing diradical character of the coupler moiety. The J value for the diradical with a fused bent coupler is always found to be smaller than that for a diradical with a linear coupler of the same size. The nuclear independent chemical shift (NICS) is calculated, and it is observed that the average of the NICS values per benzenoid ring in the diradical is less than that in the normal polyacene molecule. An empirical formula for the magnetic exchange coupling constant of a NN diradical with an aromatic spacer is obtained by combining the Wiberg bond order (BO), the angle of twist (phi) of the monoradical (NN) plane from the plane of the coupler, and the NICS values. A comparison of the formula with the computed values reveals that, from tetracene onward, the diradical nature of the linear acene couplers becomes prominent thereby leading to an increase in the ferromagnetic coupling constant. Isotropic hyperfine coupling constants are calculated by using a polarized continuum model for the diradicals in different solvents and in vacuum.

PubMed Disclaimer

LinkOut - more resources