Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2006 Dec 14;49(25):7331-41.
doi: 10.1021/jm060492b.

Isoprenoid biosynthesis as a drug target: bisphosphonate inhibition of Escherichia coli K12 growth and synergistic effects of fosmidomycin

Affiliations

Isoprenoid biosynthesis as a drug target: bisphosphonate inhibition of Escherichia coli K12 growth and synergistic effects of fosmidomycin

Annette Leon et al. J Med Chem. .

Abstract

We screened a library of 117 bisphosphonates for antibacterial activity against Escherichia coli. The most potent growth inhibitors where N-[methyl(4-phenylalkyl)]-3-aminopropyl-1-hydroxy-1,1-bisphosphonates, known potent bone resorption inhibitors, and there was a generally good correlation between cell growth inhibition and E. coli farnesyl diphosphate synthase (FPPS) inhibition. However, some potent FPPS inhibitors had no activity in cell growth inhibition, and based on the result of Catalyst pharmacophore modeling, this could be attributed to the requirement of a large hydrophobic feature for cellular activity (due most likely to transport). The activity of the most potent compound, N-[methyl(4-phenylbutyl)]-3-aminopropyl-1-hydroxy-1,1-bisphosphonate (13), was strongly potentiated by the drug fosmidomycin. The transcription profiles for 13 or fosmidomycin alone were different from those found with carbenicillin or ciprofloxacin alone, but there were many similarities between the combination (13-fosmidomycin) and carbenicillin or ciprofloxacin, reflecting the more potent bactericidal activity of the drug combination on bacterial growth.

PubMed Disclaimer

Similar articles

Cited by

Publication types

MeSH terms

LinkOut - more resources