Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2007 Feb;42(2):400-10.
doi: 10.1016/j.yjmcc.2006.10.014. Epub 2006 Dec 6.

Preconditioning protects endothelium by preventing ET-1-induced activation of NADPH oxidase and xanthine oxidase in post-ischemic heart

Affiliations

Preconditioning protects endothelium by preventing ET-1-induced activation of NADPH oxidase and xanthine oxidase in post-ischemic heart

Monika Duda et al. J Mol Cell Cardiol. 2007 Feb.

Abstract

The hypothesis was tested that endothelin-1 (ET-1)-induced superoxide (O(2)(-)) generation mediates post-ischemic coronary endothelial injury, that ischemic preconditioning (IPC) affords endothelial protection by preventing post-ischemic ET-1, and thus O(2)(-), generation, and that opening of the mitochondrial ATP-dependent potassium channel (mK(ATP)) triggers the mechanism of IPC. Furthermore, the study was aimed at identifying the source of O(2)(-) mediating the endothelial injury. Langendorff-perfused guinea-pig hearts were subjected either to 30 min ischemia/35 min reperfusion (IR) or were preconditioned prior to IR with three cycles of either 5 min ischemia/5 min reperfusion or 5 min infusion/5 min washout of mK(ATP) opener diazoxide (0.5 mM). Coronary flow responses to acetylcholine (ACh) served as a measure of endothelium-dependent vascular function. Myocardial outflow of ET-1 and O(2)(-) and functional recoveries were followed during reperfusion. NADPH oxidase and xanthine oxidase (XO) activities were measured in cardiac homogenates. IR augmented ET-1 and O(2)(-) outflow and impaired ACh response. All these effects were attenuated or prevented by IPC and diazoxide, and 5-hydroxydecanoate (a selective mK(ATP) blocker) abolished the effects of IPC and diazoxide. Superoxide dismutase and tezosentan (a mixed ET-1-receptor antagonist) mimicked the effects of IPC, although they had no effect on the ET-1 generation. IR augmented also the activity of NADPH oxidase and XO. Apocynin treatment, that resulted in NADPH oxidase inhibition, prevented XO activation and O(2)(-) generation in IR hearts. The inhibition of XO, either by allopurinol or feeding the animals with tungsten-enriched chow, prevented post-ischemic O(2)(-) generation, although these interventions had no effect on the NADPH activity. In addition, the post-ischemic activation of NADPH oxidase and XO, and O(2)(-) generation were prevented by IPC, tezosentan, thenoyltrifluoroacetone (mitochondrial complex II inhibitor), and tempol (cell-membrane permeable O(2)(-) scavenger). In guinea-pig heart: (i) ET-1-induced O(2)(-) generation mediates post-ischemic endothelial dysfunction; (ii) IPC and diazoxide afford endothelial protection by attenuating the ET-1, and thus O(2)(-) generation, and the mK(ATP) opening triggers the protection; (iii) the NADPH oxidase maintains the activity of XO, and the XO-derived O(2)(-) mediates the endothelial injury, and (iv) ET-1 and O(2)(-) (probably of mitochondrial origin) are upstream activators of the NADPH oxidase-XO cascade, and IPC prevents the cascade activation and the endothelial dysfunction by preventing the ET-1 generation.

PubMed Disclaimer

Similar articles

Cited by

Publication types

MeSH terms

LinkOut - more resources