Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Comparative Study
. 2007 Mar;65(3):346-53.
doi: 10.1016/j.ejpb.2006.10.021. Epub 2006 Nov 7.

Effervescent dry powder for respiratory drug delivery

Affiliations
Comparative Study

Effervescent dry powder for respiratory drug delivery

Leticia Ely et al. Eur J Pharm Biopharm. 2007 Mar.

Abstract

The objective of this work was to develop a new type of respiratory drug delivery carrier particle that incorporates an active release mechanism. Spray drying was used to manufacture inhalable powders containing polybutylcyanoacrylate nanoparticles and ciprofloxacin as model substances for pulmonary delivery. The carrier particles incorporated effervescent technology, thereby adding an active release mechanism to their pulmonary route of administration. Effervescent activity of the carrier particles was observed when the carrier particles were exposed to humidity. Gas bubbles caused by the effervescent reaction were visualized by confocal laser scanning microscopy. The images showed that nanoparticles were distributed throughout the gas bubble. For the effervescent formulation the average mass median aerodynamic diameter (MMAD) was 2.17 microm+/-0.42, fine particle fraction (FPF(<=5.6 microm)) was 46.47%+/-15 and the GSD was 2.00+/-0.06. The results also showed that the effervescent carrier particles released 56+/-8% ciprofloxacin into solution compared with 32+/-3% when lactose carrier particles were used. The mean nanoparticle size did not significantly change upon release when the nanoparticles were incorporated into an effervescent formulation. However, the mean size significantly increased upon release when only lactose was used as carrier particle matrix. In conclusion, effervescent carrier particles can be synthesized with an adequate particle size for deep lung deposition. This opens the door for future research to explore this technology for delivery of a large range of substances to the lungs with possible improved release compared to conventional carrier particles.

PubMed Disclaimer

Similar articles

Cited by

Publication types

MeSH terms

LinkOut - more resources