Bayesian fMRI data analysis with sparse spatial basis function priors
- PMID: 17157034
- DOI: 10.1016/j.neuroimage.2006.10.005
Bayesian fMRI data analysis with sparse spatial basis function priors
Abstract
In previous work we have described a spatially regularised General Linear Model (GLM) for the analysis of brain functional Magnetic Resonance Imaging (fMRI) data where Posterior Probability Maps (PPMs) are used to characterise regionally specific effects. The spatial regularisation is defined over regression coefficients via a Laplacian kernel matrix and embodies prior knowledge that evoked responses are spatially contiguous and locally homogeneous. In this paper we propose to finesse this Bayesian framework by specifying spatial priors using Sparse Spatial Basis Functions (SSBFs). These are defined via a hierarchical probabilistic model which, when inverted, automatically selects an appropriate subset of basis functions. The method includes non-linear wavelet shrinkage as a special case. As compared to Laplacian spatial priors, SSBFs allow for spatial variations in signal smoothness, are more computationally efficient and are robust to heteroscedastic noise. Results are shown on synthetic data and on data from an event-related fMRI experiment.
Similar articles
-
Bayesian fMRI time series analysis with spatial priors.Neuroimage. 2005 Jan 15;24(2):350-62. doi: 10.1016/j.neuroimage.2004.08.034. Neuroimage. 2005. PMID: 15627578
-
Fully Bayesian spatio-temporal modeling of FMRI data.IEEE Trans Med Imaging. 2004 Feb;23(2):213-31. doi: 10.1109/TMI.2003.823065. IEEE Trans Med Imaging. 2004. PMID: 14964566
-
Classification of fMRI time series in a low-dimensional subspace with a spatial prior.IEEE Trans Med Imaging. 2008 Jan;27(1):87-98. doi: 10.1109/TMI.2007.903251. IEEE Trans Med Imaging. 2008. PMID: 18270065
-
Brain functional localization: a survey of image registration techniques.IEEE Trans Med Imaging. 2007 Apr;26(4):427-51. doi: 10.1109/TMI.2007.892508. IEEE Trans Med Imaging. 2007. PMID: 17427731 Review.
-
Wavelets and functional magnetic resonance imaging of the human brain.Neuroimage. 2004;23 Suppl 1:S234-49. doi: 10.1016/j.neuroimage.2004.07.012. Neuroimage. 2004. PMID: 15501094 Review.
Cited by
-
An Anisotropic 4D Filtering Approach to Recover Brain Activation From Paradigm-Free Functional MRI Data.Front Neuroimaging. 2022 Apr 1;1:815423. doi: 10.3389/fnimg.2022.815423. eCollection 2022. Front Neuroimaging. 2022. PMID: 37555185 Free PMC article.
-
Bayesian analysis of fMRI data with ICA based spatial prior.Med Image Comput Comput Assist Interv. 2008;11(Pt 2):246-54. doi: 10.1007/978-3-540-85990-1_30. Med Image Comput Comput Assist Interv. 2008. PMID: 18982612 Free PMC article.
-
A topographic latent source model for fMRI data.Neuroimage. 2011 Jul 1;57(1):89-100. doi: 10.1016/j.neuroimage.2011.04.042. Epub 2011 Apr 28. Neuroimage. 2011. PMID: 21549204 Free PMC article.
-
A spatio-temporal nonparametric Bayesian variable selection model of fMRI data for clustering correlated time courses.Neuroimage. 2014 Jul 15;95:162-75. doi: 10.1016/j.neuroimage.2014.03.024. Epub 2014 Mar 18. Neuroimage. 2014. PMID: 24650600 Free PMC article.
-
Toward a new application of real-time electrophysiology: online optimization of cognitive neurosciences hypothesis testing.Brain Sci. 2014 Jan 23;4(1):49-72. doi: 10.3390/brainsci4010049. Brain Sci. 2014. PMID: 24961700 Free PMC article.
Publication types
MeSH terms
Grants and funding
LinkOut - more resources
Full Text Sources
Medical
Research Materials