Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2007 Jan;6(1):39-43.
doi: 10.1038/nmat1803. Epub 2006 Dec 10.

Triggering dynamics of the high-pressure benzene amorphization

Affiliations

Triggering dynamics of the high-pressure benzene amorphization

Lucia Ciabini et al. Nat Mater. 2007 Jan.

Abstract

Success in designing and tailoring solid-state reactions depends on the knowledge of the mechanisms regulating the reactivity at the microscopic level. In spite of several attempts to rationalize the reactivity of crystals, the question of the existence of a critical distance for a reaction to occur remains unsolved. In this framework, the role of lattice phonons, which continuously tune the relative distance and orientation of the molecules, is still not fully understood. Here, we show that at the onset of the transformation of crystalline benzene to an amorphous hydrogenated carbon the intermolecular C-C distance is always the same (about 2.6 A) once collective motions are taken into account, and it is independent of the pressure and temperature conditions. This conclusion is supported by first-principles molecular-dynamics simulations. This is a clear demonstration of the role of lattice phonons in driving the reactivity in the crystalline phase by fine-tuning of the nearest-neighbour distances. The knowledge of the critical C-C distance can be crucial in planning solid-state reactions at moderate pressure.

PubMed Disclaimer

Comment in

LinkOut - more resources