Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2006 Dec;6(24):6437-46.
doi: 10.1002/pmic.200600351.

Proteomic analysis reveals higher demand for antioxidant protection in embryonic stem cell-derived smooth muscle cells

Affiliations

Proteomic analysis reveals higher demand for antioxidant protection in embryonic stem cell-derived smooth muscle cells

Xiaoke Yin et al. Proteomics. 2006 Dec.

Abstract

Embryonic stem (ES) cells can differentiate into vascular smooth muscle cells (SMCs), but differences in protein composition, function and behaviour between stem cell-derived and mature SMCs remain to be characterized. Using differential in gel electrophoresis (DIGE) and MS, we identified 146 proteins that differed between ES cell-derived SMCs (esSMCs) and aortic SMCs, including proteins involved in DNA maintenance (higher in esSMCs), cytoskeletal proteins and calcium-binding proteins (higher in aortic SMCs). Notably, esSMCs showed decreased expression of mitochondrial, but a compensatory increase of cytosolic antioxidants. Subsequent experiments revealed that mitochondrial-derived reactive oxygen species (ROS) were markedly increased in esSMCs. Despite a three-fold rise in glutathione (GSH) reductase activity, esSMCs had lower levels of reduced GSH, and depletion of GSH by diethyl maleate or inhibition of GSH reductase by carmustine (BCNU) resulted in more pronounced cell death compared to aortic SMCs, while addition of antioxidants improved the viability of esSMCs. We present the first proteomic analysis of esSMCs demonstrating that stem cell-derived SMCs are more sensitive to oxidative stress due to increased generation of mitochondrial-derived ROS and require additional antioxidant protection for survival.

PubMed Disclaimer

Publication types

MeSH terms

LinkOut - more resources