Spectral and dynamical properties of multiexcitons in semiconductor nanocrystals
- PMID: 17163837
- DOI: 10.1146/annurev.physchem.58.032806.104537
Spectral and dynamical properties of multiexcitons in semiconductor nanocrystals
Abstract
Because of the strong spatial confinement of electronic wave functions and reduced dielectric screening, the effects of carrier-carrier Coulomb interactions are greatly enhanced in semiconductor nanocrystals (NCs) compared with those in bulk materials. These interactions open a highly efficient decay channel via Auger recombination, which represents a dominant recombination pathway for multiexcitons in NCs. Furthermore, strong Coulomb coupling between charge carriers leads to extremely efficient direct photogeneration of multiexcitons by single photons via carrier (or exciton) multiplication. This review focuses on spectral and dynamical properties of multiexcitons in semiconductor NCs. The specific topics discussed here include the structure of NC electronic states, spectral signatures of multiexcitons in transient absorption and photoluminescence, exciton-exciton interaction energies, Auger recombination, and carrier multiplication. This chapter also briefly reviews the implications of multiexciton effects for practical technologies, such as NC lasing and photovoltaics.
Similar articles
-
Mechanisms for photogeneration and recombination of multiexcitons in semiconductor nanocrystals: implications for lasing and solar energy conversion.J Phys Chem B. 2006 Aug 31;110(34):16827-45. doi: 10.1021/jp0615959. J Phys Chem B. 2006. PMID: 16927970
-
New aspects of carrier multiplication in semiconductor nanocrystals.Acc Chem Res. 2008 Dec;41(12):1810-9. doi: 10.1021/ar800112v. Acc Chem Res. 2008. PMID: 19006342
-
Multiple exciton generation and recombination in carbon nanotubes and nanocrystals.Acc Chem Res. 2013 Jun 18;46(6):1358-66. doi: 10.1021/ar300269z. Epub 2013 Feb 19. Acc Chem Res. 2013. PMID: 23421584
-
The role of ligands in determining the exciton relaxation dynamics in semiconductor quantum dots.Annu Rev Phys Chem. 2014;65:317-39. doi: 10.1146/annurev-physchem-040513-103649. Epub 2013 Dec 20. Annu Rev Phys Chem. 2014. PMID: 24364916 Review.
-
Carrier Multiplication Mechanisms and Competing Processes in Colloidal Semiconductor Nanostructures.Materials (Basel). 2017 Sep 18;10(9):1095. doi: 10.3390/ma10091095. Materials (Basel). 2017. PMID: 28927007 Free PMC article. Review.
Cited by
-
Spectator Exciton Effects in Nanocrystals III: Unveiling the Stimulated Emission Cross Section in Quantum Confined CsPbBr3 Nanocrystals.J Am Chem Soc. 2024 Jul 24;146(29):20241-20250. doi: 10.1021/jacs.4c05412. Epub 2024 Jul 15. J Am Chem Soc. 2024. PMID: 39007415 Free PMC article.
-
State of the Art and Prospects for Halide Perovskite Nanocrystals.ACS Nano. 2021 Jul 27;15(7):10775-10981. doi: 10.1021/acsnano.0c08903. Epub 2021 Jun 17. ACS Nano. 2021. PMID: 34137264 Free PMC article.
-
Deep Blue and Highly Emissive ZnS-Passivated InP QDs: Facile Synthesis, Characterization, and Deciphering of Their Ultrafast-to-Slow Photodynamics.ACS Appl Mater Interfaces. 2023 Jan 18;15(2):3099-3111. doi: 10.1021/acsami.2c16289. Epub 2023 Jan 6. ACS Appl Mater Interfaces. 2023. PMID: 36608171 Free PMC article.
-
Electrically control amplified spontaneous emission in colloidal quantum dots.Sci Adv. 2019 Oct 25;5(10):eaav3140. doi: 10.1126/sciadv.aav3140. eCollection 2019 Oct. Sci Adv. 2019. PMID: 31692653 Free PMC article.
-
Polarons Explain Luminescence Behavior of Colloidal Quantum Dots at Low Temperature.Sci Rep. 2018 May 30;8(1):8385. doi: 10.1038/s41598-018-26678-w. Sci Rep. 2018. PMID: 29849075 Free PMC article.
Publication types
MeSH terms
LinkOut - more resources
Full Text Sources
Other Literature Sources