A fail-safe system for the ribosome under zinc-limiting conditions in Bacillus subtilis
- PMID: 17163968
- DOI: 10.1111/j.1365-2958.2006.05513.x
A fail-safe system for the ribosome under zinc-limiting conditions in Bacillus subtilis
Abstract
As zinc is an essential trace metal ion for all living cells, cells elaborate a variety of strategies to cope with zinc starvation. In Bacillus subtilis, genes encoding ribosomal proteins L31 and S14 are duplicated into two types: one type contains a zinc-binding motif (RpmE or RpsN), whereas the other does not (YtiA or YhzA). We have previously shown that displacement of RpmE (L31) by YtiA from already assembled ribosomes is controlled by zinc, and this replacement could contribute to zinc mobilization under zinc-limiting conditions. We propose here that the switch between the two types of S14 has a different significance. rpsN is indispensable for growth and depletion of RpsN results in defective 30S subunits. YhzA can functionally replace RpsN to allow continued ribosome assembly under zinc-limiting conditions. Unlike YtiA, YhzA appeared in the ribosome at a slower rate consistent with incorporation into newly synthesized, rather than pre-existing ribosomes. These results raise the possibility that YhzA is involved in a fail-safe system for the de novo synthesis of ribosomes under zinc-limiting conditions.
Similar articles
-
Towards an elucidation of the roles of the ribosome during different growth phases in Bacillus subtilis.Biosci Biotechnol Biochem. 2010;74(3):451-61. doi: 10.1271/bbb.90859. Epub 2010 Mar 7. Biosci Biotechnol Biochem. 2010. PMID: 20208344 Review.
-
Zinc is a key factor in controlling alternation of two types of L31 protein in the Bacillus subtilis ribosome.Mol Microbiol. 2004 Apr;52(1):273-83. doi: 10.1111/j.1365-2958.2003.03972.x. Mol Microbiol. 2004. PMID: 15049826
-
Liberation of zinc-containing L31 (RpmE) from ribosomes by its paralogous gene product, YtiA, in Bacillus subtilis.J Bacteriol. 2006 Apr;188(7):2715-20. doi: 10.1128/JB.188.7.2715-2720.2006. J Bacteriol. 2006. PMID: 16547061 Free PMC article.
-
Contributions of Zur-controlled ribosomal proteins to growth under zinc starvation conditions.J Bacteriol. 2009 Oct;191(19):6116-22. doi: 10.1128/JB.00802-09. Epub 2009 Jul 31. J Bacteriol. 2009. PMID: 19648245 Free PMC article.
-
Proteomic study of the Bacillus subtilis ribosome: Finding of zinc-dependent replacement for ribosomal protein L31 paralogues.J Gen Appl Microbiol. 2006 Oct;52(5):249-58. doi: 10.2323/jgam.52.249. J Gen Appl Microbiol. 2006. PMID: 17310068 Review.
Cited by
-
Label-Free Quantitation of Ribosomal Proteins from Bacillus subtilis for Antibiotic Research.Methods Mol Biol. 2023;2601:363-378. doi: 10.1007/978-1-0716-2855-3_20. Methods Mol Biol. 2023. PMID: 36445595
-
Inactivation of ribosomal protein genes in Bacillus subtilis reveals importance of each ribosomal protein for cell proliferation and cell differentiation.J Bacteriol. 2012 Nov;194(22):6282-91. doi: 10.1128/JB.01544-12. Epub 2012 Sep 21. J Bacteriol. 2012. PMID: 23002217 Free PMC article.
-
Heterogeneity of the translational machinery: Variations on a common theme.Biochimie. 2015 Jul;114:39-47. doi: 10.1016/j.biochi.2014.12.011. Epub 2014 Dec 24. Biochimie. 2015. PMID: 25542647 Free PMC article. Review.
-
Bacterial sensors define intracellular free energies for correct enzyme metalation.Nat Chem Biol. 2019 Mar;15(3):241-249. doi: 10.1038/s41589-018-0211-4. Epub 2019 Jan 28. Nat Chem Biol. 2019. PMID: 30692683 Free PMC article.
-
Evolution of Ribosomal Protein S14 Demonstrated by the Reconstruction of Chimeric Ribosomes in Bacillus subtilis.J Bacteriol. 2021 Apr 21;203(10):e00599-20. doi: 10.1128/JB.00599-20. Print 2021 Apr 21. J Bacteriol. 2021. PMID: 33649148 Free PMC article.
Publication types
MeSH terms
Substances
LinkOut - more resources
Full Text Sources
Molecular Biology Databases
Research Materials