Ion channels and calcium signaling in cerebral arteries following subarachnoid hemorrhage
- PMID: 17164032
- DOI: 10.1179/016164106X151972
Ion channels and calcium signaling in cerebral arteries following subarachnoid hemorrhage
Abstract
Entry of Ca(2+) through voltage-dependent calcium channels (VDCCs) is critical to the regulation of intracellular free calcium concentration ([Ca(2+)](i)) in vascular smooth muscle and thus the control of cerebral artery diameter. Increased VDCC activity in cerebral artery myocytes may contribute to decreased cerebral blood flow and the accompanying neurological deficits associated with subarachnoid hemorrhage (SAH). This review will focus on the impact of SAH on VDCCs and K(+)-selective ion channels, two important classes of ion channels located in the plasma membrane of cerebral artery myocytes. SAH may act through a variety of direct and indirect mechanisms to increase the activity of VDCCs promoting cerebral artery constriction and reduced cerebral blood flow. Further, SAH may lead to suppression of K(+) channel activity to cause membrane potential depolarization to enhance VDCC activity. The ability of VDCC blockers or K(+) channel activators to alleviate SAH-induced vasospasm will also be examined.
Similar articles
-
Emergence of a R-type Ca2+ channel (CaV 2.3) contributes to cerebral artery constriction after subarachnoid hemorrhage.Circ Res. 2005 Mar 4;96(4):419-26. doi: 10.1161/01.RES.0000157670.49936.da. Epub 2005 Feb 3. Circ Res. 2005. PMID: 15692089
-
Preserved BK channel function in vasospastic myocytes from a dog model of subarachnoid hemorrhage.J Vasc Res. 2008;45(5):402-15. doi: 10.1159/000124864. Epub 2008 Apr 10. J Vasc Res. 2008. PMID: 18401179
-
Oxyhemoglobin-induced suppression of voltage-dependent K+ channels in cerebral arteries by enhanced tyrosine kinase activity.Circ Res. 2006 Nov 24;99(11):1252-60. doi: 10.1161/01.RES.0000250821.32324.e1. Epub 2006 Oct 26. Circ Res. 2006. PMID: 17068294
-
Evidence that 20-HETE contributes to the development of acute and delayed cerebral vasospasm.Neurol Res. 2006 Oct;28(7):738-49. doi: 10.1179/016164106X152016. Neurol Res. 2006. PMID: 17164037 Review.
-
Molecular mechanisms of cerebral vasospasm following aneurysmal SAH.Neurol Res. 2007 Oct;29(7):636-42. doi: 10.1179/016164107X240224. Neurol Res. 2007. PMID: 18173899 Review.
Cited by
-
Impact of subarachnoid hemorrhage on local and global calcium signaling in cerebral artery myocytes.Acta Neurochir Suppl. 2011;110(Pt 1):145-50. doi: 10.1007/978-3-7091-0353-1_25. Acta Neurochir Suppl. 2011. PMID: 21116930 Free PMC article.
-
Calcium homeostasis during magnesium treatment in aneurysmal subarachnoid hemorrhage.Neurocrit Care. 2008;8(3):413-7. doi: 10.1007/s12028-008-9068-9. Neurocrit Care. 2008. PMID: 18317951 Clinical Trial.
-
Relationship between plasma high mobility group box-1 protein levels and clinical outcomes of aneurysmal subarachnoid hemorrhage.J Neuroinflammation. 2012 Aug 11;9:194. doi: 10.1186/1742-2094-9-194. J Neuroinflammation. 2012. PMID: 22883976 Free PMC article.
-
Involvement of endothelial-derived relaxing factors in the regulation of cerebral blood flow.Neurol Sci. 2011 Aug;32(4):551-7. doi: 10.1007/s10072-011-0622-4. Epub 2011 May 17. Neurol Sci. 2011. PMID: 21584736 Review.
-
SAH-induced MMP activation and K V current suppression is mediated via both ROS-dependent and ROS-independent mechanisms.Acta Neurochir Suppl. 2015;120:89-94. doi: 10.1007/978-3-319-04981-6_15. Acta Neurochir Suppl. 2015. PMID: 25366605 Free PMC article.
Publication types
MeSH terms
Substances
Grants and funding
LinkOut - more resources
Full Text Sources
Miscellaneous