Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Comparative Study
. 2007 Jan 22;412(1):45-50.
doi: 10.1016/j.neulet.2006.10.055. Epub 2006 Dec 11.

Impairment of odor recognition in Parkinson's disease caused by weak activations of the orbitofrontal cortex

Affiliations
Comparative Study

Impairment of odor recognition in Parkinson's disease caused by weak activations of the orbitofrontal cortex

Yuri Masaoka et al. Neurosci Lett. .

Abstract

Olfactory dysfunction and abnormalities of olfactory brain structures are found in patients with Parkinson's disease (PD), and a number of studies have reported that olfactory dysfunction is caused by abnormalities of the central olfactory systems. We previously analyzed electroencephalograms (EEGs) and respiration simultaneously in normal subjects while testing for detection and recognition of odors. We identified changes in respiration pattern in response to odor stimuli and found inspiratory phase-locked alpha oscillations (I-alpha). The genesis of I-alpha were identified in olfactory-related areas including the entorhinal cortex, hippocampus, amygdale and orbitofrontal cortex with an EEG dipole tracing method. In the present study, we used the same protocol in PD patients and compared results of PD with those of age-matched controls. All PD patients detected odor, but 5 out of 10 showed impaired odor recognition. Changes in breathing pattern associated with emotional changes during exposure to odor stimuli were not observed in PD patients. I-alpha waveforms were not observed; however, positive waves followed by negative waves were identified approximately 100ms after inspiration onset. Dipoles of this component were localized in the entorhinal cortex for odor detection in all patients and in the entorhinal cortex and middle temporal gyrus for PD patients who could discriminate odors. Odor recognition in PD could be subserved by a different neural circuit from that of normal subjects, done through the temporal association cortex as a subsystem for recognizing the odor; however, the system may not be associated with the odor-induced emotions.

PubMed Disclaimer

Similar articles

Cited by

Publication types

LinkOut - more resources