Quantitative real-time measurements of DNA hybridization with alkylated nonoxidized silicon nanowires in electrolyte solution
- PMID: 17165787
- PMCID: PMC3695614
- DOI: 10.1021/ja065923u
Quantitative real-time measurements of DNA hybridization with alkylated nonoxidized silicon nanowires in electrolyte solution
Abstract
The quantitative, real-time detection of single-stranded oligonucleotides with silicon nanowires (SiNWs) in physiologically relevant electrolyte solution is demonstrated. Debye screening of the hybridization event is circumvented by utilizing electrostatically adsorbed primary DNA on an amine-terminated NW surface. Two surface functionalization chemistries are compared: an amine-terminated siloxane monolayer on the native SiO2 surface of the SiNW, and an amine-terminated alkyl monolayer grown directly on a hydrogen-terminated SiNW surface. The SiNWs without the native oxide exhibit improved solution-gated field-effect transistor characteristics and a significantly enhanced sensitivity to single-stranded DNA detection, with an accompanying 2 orders of magnitude improvement in the dynamic range of sensing. A model for the detection of analyte by SiNW sensors is developed and utilized to extract DNA-binding kinetic parameters. Those values are directly compared with values obtained by the standard method of surface plasmon resonance (SPR) and demonstrated to be similar. The nanowires, however, are characterized by higher detection sensitivity. The implication is that SiNWs can be utilized to quantitate the solution-phase concentration of biomolecules at low concentrations. This work also demonstrates the importance of surface chemistry for optimizing biomolecular sensing with silicon nanowires.
Figures








Similar articles
-
Silicon nanowires as field-effect transducers for biosensor development: a review.Anal Chim Acta. 2014 May 12;825:1-25. doi: 10.1016/j.aca.2014.03.016. Epub 2014 Mar 15. Anal Chim Acta. 2014. PMID: 24767146 Review.
-
Highly sensitive measurements of PNA-DNA hybridization using oxide-etched silicon nanowire biosensors.Biosens Bioelectron. 2008 Jun 15;23(11):1701-7. doi: 10.1016/j.bios.2008.02.006. Epub 2008 Feb 13. Biosens Bioelectron. 2008. PMID: 18356037
-
Silicon nanowire arrays for label-free detection of DNA.Anal Chem. 2007 May 1;79(9):3291-7. doi: 10.1021/ac061808q. Epub 2007 Apr 4. Anal Chem. 2007. PMID: 17407259
-
The utilization of SiNWs/AuNPs-modified indium tin oxide (ITO) in fabrication of electrochemical DNA sensor.Mater Sci Eng C Mater Biol Appl. 2014 Dec;45:270-6. doi: 10.1016/j.msec.2014.09.010. Epub 2014 Sep 16. Mater Sci Eng C Mater Biol Appl. 2014. PMID: 25491829
-
Silicon nanowire field-effect-transistor based biosensors: from sensitive to ultra-sensitive.Biosens Bioelectron. 2014 Oct 15;60:101-11. doi: 10.1016/j.bios.2014.03.057. Epub 2014 Apr 15. Biosens Bioelectron. 2014. PMID: 24787124 Review.
Cited by
-
High-k dielectric Al₂O₃ nanowire and nanoplate field effect sensors for improved pH sensing.Biomed Microdevices. 2011 Apr;13(2):335-44. doi: 10.1007/s10544-010-9497-z. Biomed Microdevices. 2011. PMID: 21203849 Free PMC article.
-
Peptide-nanowire hybrid materials for selective sensing of small molecules.J Am Chem Soc. 2008 Jul 23;130(29):9583-9. doi: 10.1021/ja802506d. Epub 2008 Jun 25. J Am Chem Soc. 2008. PMID: 18576642 Free PMC article.
-
Antigen detection via the rate of ion current rectification change of the antibody-modified glass nanopore membrane.Langmuir. 2014 Sep 23;30(37):11248-56. doi: 10.1021/la502714b. Epub 2014 Sep 9. Langmuir. 2014. PMID: 25157668 Free PMC article.
-
Ultra-Scaled Si Nanowire Biosensors for Single DNA Molecule Detection.Sensors (Basel). 2023 Jun 7;23(12):5405. doi: 10.3390/s23125405. Sensors (Basel). 2023. PMID: 37420571 Free PMC article.
-
Label-free, electrical detection of the SARS virus N-protein with nanowire biosensors utilizing antibody mimics as capture probes.ACS Nano. 2009 May 26;3(5):1219-24. doi: 10.1021/nn900086c. ACS Nano. 2009. PMID: 19422193 Free PMC article.
References
-
- Kong J, Franklin NR, Zhou CW, Chapline MG, Peng S, Cho KJ, Dai H. Science. 2000;287:622. - PubMed
-
- Patolsky F, Lieber CM. Mater. Today. 2005;8:20.
-
- Park SJ, Taton TA, Mirkin CA. Science. 2002;295:1503. - PubMed
-
- Ziegler C. Analytical and Bioanalytical Chemistry. 2004;379:946. - PubMed
-
- Lasseter TL, Cai W, Hamers RJ. Analyst. 2004;129:3. - PubMed
Publication types
MeSH terms
Substances
Grants and funding
LinkOut - more resources
Full Text Sources
Other Literature Sources