Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2007 Feb 12;117(2):273-80.
doi: 10.1016/j.jconrel.2006.10.025. Epub 2006 Oct 28.

Chitosan-graft-polyethylenimine as a gene carrier

Affiliations

Chitosan-graft-polyethylenimine as a gene carrier

Hu-Lin Jiang et al. J Control Release. .

Abstract

Chitosans have been proposed as biocompatible alternative cationic polymers that are suitable for non-viral delivery. However, the transfection efficiency of chitosan-DNA nanoparticles is still very low. To improve transfection efficiency, we prepared chitosan-graft-polyethylenimine (CHI-g-PEI) copolymer by an imine reaction between periodate-oxidized chitosan and polyethylenimine (PEI). The molecular weight and composition of the CHI-g-PEI copolymer were characterized, using multi-angle laser scattering (GPC-MALS) and (1)H nuclear magnetic resonance ((1)H NMR), respectively. The copolymer was complexed with plasmid DNA (pDNA) in various copolymer/DNA (N/P) charge ratios, and the complex was characterized. CHI-g-PEI showed good DNA binding ability and high protection of DNA from nuclease attack. Also, with an increase in charge ratio, the sizes of the CHI-g-PEI/DNA complex showed a tendency to decrease, whereas the zeta potential of the complex showed an increase. The CHI-g-PEI copolymer had low cytotoxicity, compared to PEI 25K from cytotoxicity assays. At high N/P ratios, the CHI-g-PEI/DNA complex showed higher transfection efficiency than PEI 25K in HeLa, 293T and HepG2 cell lines. Our results indicate that the CHI-g-PEI copolymer has potential as a gene carrier in vitro.

PubMed Disclaimer

Similar articles

Cited by

Publication types

MeSH terms

LinkOut - more resources