Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2006 Dec 5:12:1516-25.

Arrestin residues involved in the functional binding of arrestin to phosphorylated, photolyzed rhodopsin

Affiliations
  • PMID: 17167410
Free article

Arrestin residues involved in the functional binding of arrestin to phosphorylated, photolyzed rhodopsin

Maria T Ascano et al. Mol Vis. .
Free article

Abstract

Purpose: The purpose of our study was to determine whether arrestin residues previously predicted by computational modeling to interact with an aspartic acid substituted rhodopsin tail are actually involved in interactions with phospho-residues on the rhodopsin cytoplasmic tail.

Methods: We generated arrestin mutants with altered charges at predicted positions. These mutants were then tested for the ability to inhibit rhodopsin using both direct binding assays, as well as functional assays involving transducin inhibition assays.

Results: Our results demonstrate that the computer-predicted residues are indeed involved in both the ability of the low-affinity state of arrestin to bind to rhodopsin as well as the ability of arrestin to be induced into a higher-affinity state in a phospho-residue-dependent manner.

Conclusions: Our results also suggest that positions K14, K15, R29, H301, and K300 on arrestin interact with the phosphorylated carboxyl tail of rhodopsin and that this translates to the efficient activation of arrestin.

PubMed Disclaimer

Publication types

LinkOut - more resources