Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2006;12(35):4625-35.
doi: 10.2174/138161206779010422.

Altering the sphingosine-1-phosphate/ceramide balance: a promising approach for tumor therapy

Affiliations

Altering the sphingosine-1-phosphate/ceramide balance: a promising approach for tumor therapy

Andrea Huwiler et al. Curr Pharm Des. 2006.

Abstract

In recent years sphingolipids have emerged as important signaling molecules regulating fundamental cell responses such as cell death and differentiation, proliferation and aspects of inflammation. Especially ceramide has been a main focus of research since it possesses pro-apoptotic capacity in many cell types. A counterplayer of ceramide was found in sphingosine-1-phosphate (S1P), which is generated from ceramide by the consecutive actions of ceramidase and sphingosine kinase. S1P can potently induce cell proliferation via binding to and activation of the Edg family of receptors which have now been renamed as S1P receptors. Obviously, a delicate balance between ceramide and sphingosine-1-phosphate determines whether cells undergo apoptosis or proliferate, two cell responses that are critically involved in tumor development. Directing the balance in favor of ceramide, i.e. by inhibiting ceramidase or sphingosine kinase activities may support the pro-apoptotic action of ceramide and thus may have beneficial effects in cancer therapy. This review will summarize novel insights into the regulation of sphingolipid formation and their potential involvement in tumor development. Finally, we will pinpoint potential new targets for tumor therapy.

PubMed Disclaimer

Similar articles

Cited by

Publication types

MeSH terms

LinkOut - more resources