Sandwich-like compounds based on the all-metal aromatic unit Al(4)2- and the main-group metals M (M=Li, Na, K, Be, Mg, Ca)
- PMID: 17171736
- DOI: 10.1002/chem.200601223
Sandwich-like compounds based on the all-metal aromatic unit Al(4)2- and the main-group metals M (M=Li, Na, K, Be, Mg, Ca)
Abstract
Inspired by the pioneering experimental characterisation of the all-metal aromatic unit Al(4)2- in the bimetallic molecules MAl4- (M=Li, Na, Cu) and by the very recent theoretical design of sandwich-type transition-metal complexes [Al4MAl4]q- (q=0-2; M=Ti, V, Cr, Zr, Nb, Mo, Hf, Ta, W), we used density functional theory (DFT) calculations (B3LYP/6-311+G(d) to design a series of novel non-transition-metal sandwich complexes based on the all-metal aromatic unit Al4(2-) and the main-group metals M (M=Li, Na, K, Be, Mg, Ca). The traditional homo-decked sandwich compounds [Al4MAl4]q- (without counterions) and (nM)q+[Al4MAl4]q- (with counterions M) (q=2-3, M=Li, Na, K, Be, Mg, Ca), although some of them are truly energy minima, have a much higher energy than many fused isomers. We thus concluded that it seems unlikely for Al4(2-) to sandwich the main-group metal atoms in the homo-decked sandwich form. Alternatively, we proposed a new type of sandwich complex, namely hetero-decked sandwich compounds [CpMAl4]q-, that are the ground-state structures for each M both with and without counterions. It was shown that with the rigid Cp- partner, the all-metal aromatic unit Al(4)2- might indeed act as a "superatom". These new types of all-metal aromatic unit-based sandwich complexes await future experimental verification.
LinkOut - more resources
Full Text Sources
Research Materials
Miscellaneous
