Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2007 Feb;1768(2):354-65.
doi: 10.1016/j.bbamem.2006.11.003. Epub 2006 Nov 11.

Molecular studies of the gel to liquid-crystalline phase transition for fully hydrated DPPC and DPPE bilayers

Affiliations
Free article

Molecular studies of the gel to liquid-crystalline phase transition for fully hydrated DPPC and DPPE bilayers

Sukit Leekumjorn et al. Biochim Biophys Acta. 2007 Feb.
Free article

Abstract

Molecular dynamics simulations were used for a comprehensive study of the structural properties of saturated lipid bilayers, DPPC and DPPE, near the main phase transition. Though the chemical structure of DPPC and DPPE are largely similar (they only differ in the choline and ethanolamine groups), their transformation process from a gel to a liquid-crystalline state is contrasting. For DPPC, three distinct structures can be identified relative to the melting temperature (Tm): below Tm with "mixed" domains consisting of lipids that are tilted with partial overlap of the lipid tails between leaflet; near Tm with a slight increase in the average area per lipid, resulting in a rearrangement of the lipid tails and an increase in the bilayer thickness; and above Tm with unhindered lipid tails in random motion resulting in an increase in %gauche formed and increase in the level of interdigitation between lipid leaflets. For DPPE, the structures identified were below Tm with "ordered" domains consisting of slightly tilted lipid tails and non-overlapping lipid tails between leaflets, near Tm with minimal rearrangement of the lipids as the bilayer thickness reduces slightly with increasing temperature, and above Tm with unhindered lipid tails as that for DPPC. For DPPE, most of the lipid tails do not overlap as observed to DPPC, which is due to the tight packing of the DPPE molecules. The non-overlapping behavior of DPPE above Tm is confirmed from the density profile of the terminal carbon atoms in each leaflet, which shows a narrow distribution near the center of the bilayer core. This study also demonstrates that atomistic simulations are capable of capturing the phase transition behavior of lipid bilayers, providing a rich set of molecular and structural information at and near the transition state.

PubMed Disclaimer

Similar articles

Cited by

LinkOut - more resources