Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2007 Mar;28(8):1461-9.
doi: 10.1016/j.biomaterials.2006.11.030. Epub 2006 Dec 15.

The effect of cholecyst-derived extracellular matrix on the phenotypic behaviour of valvular endothelial and valvular interstitial cells

Affiliations

The effect of cholecyst-derived extracellular matrix on the phenotypic behaviour of valvular endothelial and valvular interstitial cells

Sarah Brody et al. Biomaterials. 2007 Mar.

Abstract

Cholecyst-derived extracellular matrix (CEM) is a novel, proteinaceous biomaterial, derived from the porcine cholecyst, which may have potential applications as a scaffold in the area of heart valve tissue engineering. In this study the potential of CEM to support the proliferation of valvular endothelial cells (VECs) and valvular interstitial cells (VICs), while maintaining their phenotypic mRNA synthesis, protein expression and morphology was assessed by biochemical assays, electron microscopy, immunostaining and reverse-transcriptase polymerase chain reaction. VICs and VECs were isolated from the porcine aortic valve and techniques were developed for the isolation of CEM for cell culture. VECs and VICs cultured on CEM adhered and proliferated, maintaining their phenotypic morphology. VECs synthesised von Willebrand factor mRNA and endothelial nitric oxide synthase (eNOS) mRNA and expressed eNOS and VICs synthesised alpha-smooth muscle actin (alphaSMA) mRNA and expressed alphaSMA. Cellular area fraction of VICs expressing alphaSMA was 87.7+/-6.8% and cellular area fraction of VECs expressing eNOS was 93.8+/-9.3%. Findings of this study support the hypothesis that CEM is a potential biomaterial for tissue engineered heart valve scaffold design.

PubMed Disclaimer

Publication types

Substances

LinkOut - more resources