FT-IR imaging of native and tissue-engineered bone and cartilage
- PMID: 17175021
- PMCID: PMC1892909
- DOI: 10.1016/j.biomaterials.2006.11.043
FT-IR imaging of native and tissue-engineered bone and cartilage
Abstract
Fourier transform infrared (FT-IR) imaging and microspectroscopy have been extensively applied to the analyses of tissues in health and disease. Spatially resolved mid-IR data has provided insights into molecular changes that occur in diseases of connective or collagen-based tissues, including, osteoporosis, osteogenesis imperfecta, osteopetrosis and pathologic calcifications. These techniques have also been used to probe chemical changes associated with load, disuse, and micro-damage in bone, and with degradation and repair in cartilage. This review summarizes the applications of FT-IR microscopy and imaging for analyses of bone and cartilage in healthy and diseased tissues, and illustrates the application of these techniques for the characterization of tissue-engineered bone and cartilage.
Figures








Similar articles
-
Fourier transform infrared imaging and infrared fiber optic probe spectroscopy identify collagen type in connective tissues.PLoS One. 2013 May 22;8(5):e64822. doi: 10.1371/journal.pone.0064822. Print 2013. PLoS One. 2013. PMID: 23717662 Free PMC article.
-
Raman and Fourier Transform Infrared (FT-IR) Mineral to Matrix Ratios Correlate with Physical Chemical Properties of Model Compounds and Native Bone Tissue.Appl Spectrosc. 2017 Oct;71(10):2404-2410. doi: 10.1177/0003702817709286. Epub 2017 Aug 1. Appl Spectrosc. 2017. PMID: 28485618
-
Fourier transform infrared imaging spectroscopic analysis of tissue engineered cartilage: histologic and biochemical correlations.J Biomed Opt. 2005 May-Jun;10(3):031105. doi: 10.1117/1.1922329. J Biomed Opt. 2005. PMID: 16229630
-
Vibrational spectroscopic techniques to assess bone quality.Osteoporos Int. 2017 Aug;28(8):2275-2291. doi: 10.1007/s00198-017-4019-y. Epub 2017 Apr 5. Osteoporos Int. 2017. PMID: 28378291 Review.
-
Applications of Vibrational Spectroscopy for Analysis of Connective Tissues.Molecules. 2021 Feb 9;26(4):922. doi: 10.3390/molecules26040922. Molecules. 2021. PMID: 33572384 Free PMC article. Review.
Cited by
-
Effect of in vivo loading on bone composition varies with animal age.Exp Gerontol. 2015 Mar;63:48-58. doi: 10.1016/j.exger.2015.01.048. Epub 2015 Jan 30. Exp Gerontol. 2015. PMID: 25639943 Free PMC article.
-
Autoimmune arthritis deteriorates bone quantity and quality of periarticular bone in a mouse model of rheumatoid arthritis.Osteoporos Int. 2017 Feb;28(2):709-718. doi: 10.1007/s00198-016-3781-6. Epub 2016 Oct 4. Osteoporos Int. 2017. PMID: 27704183
-
Epigallocatechin Gallate-Modified Gelatins with Different Compositions Alter the Quality of Regenerated Bones.Int J Mol Sci. 2018 Oct 19;19(10):3232. doi: 10.3390/ijms19103232. Int J Mol Sci. 2018. PMID: 30347668 Free PMC article.
-
Peripheral cortical bone density predicts vertebral bone mineral properties in spine fusion surgery patients.Bone. 2023 Apr;169:116678. doi: 10.1016/j.bone.2023.116678. Epub 2023 Jan 14. Bone. 2023. PMID: 36646265 Free PMC article.
-
Effects of growth and exercise on composition, structural maturation and appearance of osteoarthritis in articular cartilage of hamsters.J Anat. 2010 Sep;217(3):262-74. doi: 10.1111/j.1469-7580.2010.01270.x. Epub 2010 Jul 14. J Anat. 2010. PMID: 20646109 Free PMC article.
References
-
- Boskey A, Mendelsohn R. Infrared analysis of bone in health and disease. J Biomed Opt. 2005;10:031102–031106. - PubMed
-
- Carden A, Morris MD. Application of vibrational spectroscopy to the study of mineralized tissues. J Biomed Opt. 2000;5:259–268. - PubMed
-
- Miller LM, Dumas P. Chemical imaging of biological tissue with synchrotron infrared light. Biochim Biophys Acta. 2006;1758:846–857. - PubMed
-
- West PA, Bostrom MP, Torzilli PA, Camacho NP. Fourier transform infrared spectral analysis of degenerative cartilage: an infrared fiber optic probe and imaging study. Appl Spectrosc. 2004;58:376–81. - PubMed
-
- Barer R, Cole ARH, Thompson HW. Infrared spectroscopy with the reflecting microscope in physics, chemistry and biology. Nature. 1949;163:198–201. - PubMed
Publication types
MeSH terms
Substances
Grants and funding
- EB00744/EB/NIBIB NIH HHS/United States
- AR043125/AR/NIAMS NIH HHS/United States
- R01 AR056145/AR/NIAMS NIH HHS/United States
- AR48337/AR/NIAMS NIH HHS/United States
- R01 AR041325/AR/NIAMS NIH HHS/United States
- DE04141/DE/NIDCR NIH HHS/United States
- R01 AR048337/AR/NIAMS NIH HHS/United States
- P30 AR046121/AR/NIAMS NIH HHS/United States
- R37 DE004141/DE/NIDCR NIH HHS/United States
- C06 RR012538/RR/NCRR NIH HHS/United States
- AR037661/AR/NIAMS NIH HHS/United States
- R01 EB000744/EB/NIBIB NIH HHS/United States
- R01 DE004141/DE/NIDCR NIH HHS/United States
- R01 AR037661/AR/NIAMS NIH HHS/United States
- C06-RR12538-01/RR/NCRR NIH HHS/United States
- AR046121/AR/NIAMS NIH HHS/United States
LinkOut - more resources
Full Text Sources
Other Literature Sources
Medical