Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2006 Dec 26;45(51):15829-37.
doi: 10.1021/bi061304m. Epub 2006 Dec 5.

Interaction of glutathione reductase with heavy metal: the binding of Hg(II) or Cd(II) to the reduced enzyme affects both the redox dithiol pair and the flavin

Affiliations

Interaction of glutathione reductase with heavy metal: the binding of Hg(II) or Cd(II) to the reduced enzyme affects both the redox dithiol pair and the flavin

Thierry Picaud et al. Biochemistry. .

Abstract

To determine the inhibition mechanism of yeast glutathione reductase (GR) by heavy metal, we have compared the electronic absorption and resonance Raman (RR) spectra of the enzyme in its oxidized (Eox) and two-electron reduced (EH2) forms, in the absence and the presence of Hg(II) or Cd(II). The spectral data clearly show a redox dependence of the metal binding. The metal ions do not affect the absorption and RR spectra of Eox. On the contrary, the EH2 spectra, generated by addition of NADPH, are strongly modified by the presence of heavy metal. The absorption changes of EH2 are metal-dependent. On the one hand, the main flavin band observed at 450 nm for EH2 is red-shifted at 455 nm for the EH2-Hg(II) complex and at 451 nm for the EH2-Cd(II) complex. On the other hand, the characteristic charge-transfer (CT) band at 540 nm is quenched upon metal binding to EH2. In NADPH excess, a new CT band is observed at 610 nm for the EH2-Hg(II)-NADPH complex and at 590 nm for EH2-Cd(II)-NADPH. The RR spectra of the EH2-metal complexes are not sensitive to the NADPH concentration. With reference to the RR spectra of EH2 in which the frequencies of bands II and III were observed at 1582 and 1547 cm-1, respectively, those of the EH2-metal complexes are detected at 1577 and 1542 cm-1, indicating an increased flavin bending upon metal coordination to EH2. From the frequency shifts of band III, a concomitant weakening of the H-bonding state of the N5 atom is also deduced. Taking into account the different chemical properties of Hg(II) and Cd(II), the coordination number of the bound metal ion was deduced to be different in GR. A mechanism of the GR inhibition is proposed. It proceeds primarily by a specific binding of the metal to the redox thiol/thiolate pair and the catalytic histidine of EH2. The bound metal ion then acts on the bending of the isoalloxazine ring of FAD as well as on the hydrophobicity of its microenvironment.

PubMed Disclaimer

Similar articles

Cited by

MeSH terms

LinkOut - more resources