Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2007;173(1):39-49.
doi: 10.1111/j.1469-8137.2006.01901.x.

A transient decrease in reactive oxygen species in roots leads to root hair deformation in the legume-rhizobia symbiosis

Affiliations
Free article

A transient decrease in reactive oxygen species in roots leads to root hair deformation in the legume-rhizobia symbiosis

Dasharath Prasad Lohar et al. New Phytol. 2007.
Free article

Abstract

* A possible role for reactive oxygen species (ROS) in root hair deformation in response to Nod factor (NF) was investigated using Medicago truncatula nodulation mutants, and an inhibitor and precursors of ROS. * In wild-type roots, ROS efflux transiently decreased approximately 1 h after NF treatment. Transcript accumulation of two NADPH oxidase homologs, respiratory burst oxidase homolog 2 (MtRBOH2) and MtRBOH3, also transiently decreased at 1 h. However, in the nonnodulating mutant Nod factor perception (nfp), transcript accumulation did not change. * Exogenous application of ROS prevented root hair swelling and branching induced by NF. When accumulation of ROS was prevented by diphenylene iodonium (DPI), NF did not induce root hair branching. Root treatment with DPI alone reduced ROS efflux and induced root hair tip swelling. Transient treatment of roots with DPI mimicked NF treatment and resulted in root hair branching in the absence of NF. A transient DPI treatment did not induce root hair branching in the nonlegumes Arabidopsis thaliana and tomato (Lycopersicon esculentum). * The results suggest a role for the transient reduction of ROS accumulation in governing NF-induced root hair deformation in legumes.

PubMed Disclaimer

Publication types

MeSH terms

LinkOut - more resources